
1

Static Analysis for Extracting Permission
Checks of a Large Scale Framework: The
Challenges And Solutions for Analyzing

Android
Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon

Abstract—A common security architecture is based on the protection of certain resources by permission checks (used e.g., in
Android and Blackberry). It has some limitations, for instance, when applications are granted more permissions than they actually
need, which facilitates all kinds of malicious usage (e.g., through code injection). The analysis of permission-based framework
requires a precise mapping between API methods of the framework and the permissions they require. In this paper, we show
that naive static analysis fails miserably when applied with off-the-shelf components on the Android framework. We then present
an advanced class-hierarchy and field-sensitive set of analyses to extract this mapping. Those static analyses are capable of
analyzing the Android framework. They use novel domain specific optimizations dedicated to Android.

Index Terms—large scale framework, permissions, call-graph, Android, security, Soot, Java, static analysis

F

1 INTRODUCTION

THE security architecture of the mobile operating
systems Android and Blackberry as well as other

systems such as the Google Chrome browser exten-
sion system, use a similar security model called the
permission-based security model [4]. A permission-
based security model can be loosely defined as a
model in which 1) each application is associated with
a set of permissions that allows accessing certain
resources1; 2) permissions are explicitly accepted by
users during the installation process and 3) permis-
sions are checked at runtime when resources are
requested.

In Android, the permission model is embedded into
the “Android framework”. The framework exposes
an Application Programming Interface (API) that con-
tains classes and methods for developers to interact
with the system resources. For instance, the API con-
tains a method getGPSLocation2 which gives the
current GPS location of the smartphone, if available.
This API method, and many others, are sensitive with
respect to security or privacy. Consequently, in re-
sponse to a call to getGPSLocation, the framework
checks that the caller has been explicitly granted the
GPS permission.

This permission model has an impact on the devel-
opment process of applications. To write an applica-
tion, developers must identify, for each API method
they use, the permissions that must be declared for the

1. Contrary to the traditional Unix permission system where
permissions are at the level of users, not applications.

2. simplified view of the API

application to work correctly. They need a mapping
between the API methods and the required permis-
sions.

In the case of Android, the mapping is given by the
official documentation. However, the documentation
is not always up-to-date or clear and, consequently,
question-and-answers website are full of questions
regarding the use of permissions3. As a result, de-
velopers often either under- or over-estimate the re-
quired permissions. Missing a permission causes the
application to crash. Adding too many of them is not
secure. In the latter case, injected malware can use
those declared, yet unused permissions, to achieve
malicious goals. We call those unused permissions,
“permission gap”. Any permission gap results in in-
secure, suspicious or unreliable applications.

To sum up, having a a clear and precise mapping that
links API methods and required permissions is of great
value in a permission-based system such as Android. It
enables developers to easily declare the permissions
they actually need: not more, not less.

To extract this map, we explore in this paper the
use of static analysis to extract the permission checks.
On a framework of the scale and sophistication of
Android, naive approaches using off-the-shelf static
analysis fail miserably. This paper discusses the build-
ing blocks that must be put together to extract a
valuable mapping between API methods and per-
missions with two kinds of analysis: the first kind
is based on class hierarchy (CHA) and the second

3. e.g. http://stackoverflow.com/questions/2378607/what-
permission-do-i-need-to-access-internet-from-an-android-
application/2378619

http://stackoverflow.com/questions/2378607/what-permission-do-i-need-to-access-internet-from-an-android-application/2378619
http://stackoverflow.com/questions/2378607/what-permission-do-i-need-to-access-internet-from-an-android-application/2378619
http://stackoverflow.com/questions/2378607/what-permission-do-i-need-to-access-internet-from-an-android-application/2378619

2

kind leverages a field-sensitive, Andersen [2] like
module called Spark [21]. Technically, we describe five
components required for extracting permission checks
in Android. The first one is a generic String analysis,
yet essential for Android where permissions are not
static constants but dynamic strings. The remaining
ones are specific to Android. Of those four, the last
two components specifically target Spark. Service Redi-
rection redirects call to services to a properly initialized
service (Android specific). Service Identity Inversion
avoids analyzing irrelevant system calls to services
(Android specific). Service Initialization properly ini-
tializes services for overcoming null values (Spark
specific). Entry Points Initialization initializes all entry
point methods and their parameters (Spark specific).
The main difficulty of this research is that, due to the
scale and complexity of Android, no building-block
yields acceptable result in isolation. Eventually, we
show that Spark can produce a good mapping of API
methods to permissions, and we compare it against
the related work [13], [3].

To sum up, the contributions of this paper are:

• the empirical demonstration that off-the-shelf
static analysis does not address the extraction of
permission checks for a framework of the caliber
of Android;

• three static analysis components (generic and
Android-specific) to be put together in order to
use Class Hierarchy Analysis (CHA) on Android;

• two static analysis components that allows one to
use field-sensitive static analysis (Spark [21]) for
analyzing Android’s permissions;

• a comparison of our results against PScout [3],
a static analysis designed concurrently with our
work and against Felt et al.’s results based on
dynamic analysis [13];

• an application of the extracted mapping on two
sets of 1421 real Android applications showing
that 129 (9%) applications suffer from a permis-
sion gap, i.e., they have more permissions that
necessary.

This paper is an extension of a short paper pub-
lished at the International Conference on Automated
Software Engineering [5]. Those results on this hot
topic have been obtained concurrently with other
work [13], [3] and explore different paths: Compared
to Felt et al. [13], we use static analysis instead of
dynamic analysis. Compared to PScout [3], we go be-
yond CHA and show that a less naive field-sensitive
analysis can also be used.

The reminder of this paper is organized as follows.
In Section 2 we explain why reducing the attack
surface is important and present a short study sup-
porting our intuition. In Section 3 we propose a for-
malization for permission-based software. In Section
4 we describe the Android system and its access
control mechanisms. Then, in Section 5 we extract the

permission map from the Android system using static
analysis. Experiments we conducted and results are
presented and discussed in Section 6. In Section 7 we
propose a generic methodology for deriving correct
application permission sets. We present the related
work in Section 8. Finally we conclude the paper and
discuss open research challenges in Section 9.

2 THE PERMISSION GAP PROBLEM

Let us now detail the permission gap problem intro-
duced in Section 1. We also present a short empirical
study showing that this problem actually happens in
practice.

2.1 Possible Consequence of a Permission Gap
Let us consider an Android application, appwrong,
which is able to communicate with external servers
since it is granted the INTERNET permission. More-
over, appwrong has declared permission CAMERA while
it does not use any code related to the camera. The
CAMERA permission allows the application to take
pictures without user intervention, i.e., the permission
gap consists of a single permission: CAMERA. Unfor-
tunately, appwrong uses a native library on which a
buffer-overflow exploit has recently been discovered.

As a result, an attacker can execute the code of its
choice in the process of appwrong by exploiting the
buffer-overflow vulnerability. The code executed by
the attacker in appwrong is granted all permissions
defined in appwrong, INTERNET but also CAMERA. This
effectively increases the attacker’s privileges. In this
particular example the attacker would be able to (1)
write code to use the camera, take a picture and
send the picture to a remote host on the Internet
and (2) execute this code in the target application by
exploiting the buffer overflow vulnerability. This kind
of attack is described in detail by Davi et al. [9].

On the contrary, if appwrong does not declare CAM-
ERA, this attack would not have been possible, and
the consequences of the buffer-overflow exploit would
have been mitigated. As noted by Manadhata [22],
reducing the attack surface does not mean no risks,
but less risks. In order to show that this example
of misconfigured application is not artificial, we now
discuss a short empirical study on the declaration of
two permissions on 1,000+ Android applications.

2.2 Declaration and Usage of Permissions “cam-
era” and “record audio”
We conducted a short empirical study on 1000+
Android applications downloaded from the Free-
warelovers application market4. For permissions
CAMERA and RECORD_AUDIO, we grepped the source
code of the Android framework to approximate the

4. http://www.freewarelovers.com/android/

http://www.freewarelovers.com/android/

3

fa

fb fc fd

fe

e1 e2 e3 e4

The application
declares permissions
p1 and p2

f1 f2 f3

f4 f5

f6

f8

f9

ck1

ck2

p3

p2

p1

p1 p2

Application

Framework

Fig. 1. A Bird’s Eye View of An Application Written
on Top of a Permission-based Framework. (en are
entry points, fn are functions and methods and ckn
represent checks of permissions pn.)

Then, we computed the list A of all the applications
which declare CAMERA or RECORD_AUDIO. Next, we
took each application app ∈ A individually and we
checked whether the application uses at least one
method of If not, it means that app is not using the
corresponding permission. When this happened, we
modified the application manifest that declares the
permission and run the application again to make sure
that our grepping approximation did not yield false
positives.

There are 7/82 applications that declare CAMERA
while not using it. Similarly, 3/35 applications declare
but do not use RECORD_AUDIO . Those results confirm
our intuition: declared permission lists are not always
required, and permission gaps indeed exist. Develop-
ers would benefit from a tool that automatically infers
the set of required permissions and approximates
permission gaps.

3 DEFINITIONS

Permission-based software is conceptually divided in
three layers: 1) the core platform (the operating sys-
tem) which is able to access all system resources (e.g.,
change the network policy); 2) a middleware respon-
sible for providing a clean application programming
interface (API) to the OS resources and for checking
that applications have the right permissions when
they want accessing them; 3) applications built on top
of the middleware. They have to explicitly declare the
permissions they require. Layers #2 and #3 motivate
the generic label “permission-based software”. Since
the middleware also hides the OS complexity and
provides an API, it is sometimes called, as in the case
of Android, a “framework”. Let us now define those
terms.

Framework A framework F is a layer that enables
applications to access resources available on the plat-
form. We model it as a bi-partite graph where each
node in the set of API method nodes connects a node
in the set of resource nodes (this set also contains a
’no resource’ node).
Example: In Figure 1 the framework is composed
of nine methods (four of them being public). Ap-
plications access the framework through four API
methods. In the case of Android, F is the Android
4.0.1 Java Framework composed of 4,071 classes and
126,660 methods. To access a resource, an Android
application has to make a method call that goes
through F .

Permission A permission is a token that an appli-
cation needs to access a specific resource.
Example: In Figure 1, the application declares two per-
missions. The framework defines three permissions
but only checks two. We make no assumptions on
permissions, and we consider them as independent
(neither grouped, nor hierarchical).

Permission-based system A permission-based sys-
tem is composed of at least one framework, a list of
permissions and a list of protected resources. Each
protected resource is associated with a fixed list of
permissions.

Entry point An entry point of a framework is
a method that an application can use (e.g., public
or documented). Constructors are also considered as
entry points. We denote EntryF as the set of all entry
points of F .
Example: In Figure 1, there are four entry points (e1
to e4). An application can call any public method
of the framework. Some methods accessing system
resources (like an account) are protected by one or
more permissions. In the case of Android 4.0.1, there
are 50,029 entry points.

Declared permission A declared permission for an
application app is a permission which is in the per-
mission list of app. The set of all declared permission
for an application app is noted Pd(app).
Example: In Figure 1, the application declares p1 and
p2. In the case of Android, the permissions of an
application are declared in a file called manifest.

Required permission A required permission for
an application app is a permission associated with
a resource that app uses at least once. The set of all
required permissions for an application app is noted
Preq(app).
Example: In Figure 1, the application requires permis-
sion p1.

Inferred permission An inferred permission for
an application app is a permission that an analysis
technique found to be required for app.
Depending on the analysis technique used, the in-
ferred permission list may be either an over- or an
under- approximation of the required permission list.
When developers write manifests, they write Pd(app)

4

by trying to guess Preq(app) based on documentation
and trial-and-errors. In this paper, we propose to
automatically infer a permission list Pifrd(app) in
order to avoid this manual and error-prone activity.

4 OVERVIEW OF ANDROID

This section gives an overview of the architecture of
Android in Section 4.1. We focus on the parts related
to permissions in Sections 4.2 and 4.3. Other technical
details very important for static analysis are discussed
in Section 4.4.

4.1 Software Stack

Android is a system with different layers. It consists
of a modified Linux kernel, C/C++ libraries, a virtual
machine called Dalvik, a Java framework compiled
to Dalvik bytecode, and a set of applications. Appli-
cations for Android are written in Java and compiled
into Dalvik bytecode. Dalvik bytecode is optimized to
run on devices where memory and processing power
are scarce. An Android application is packaged into
an Android package file which contains the Dalvik
bytecode, data (pictures, sounds ...) and a metadata
file called the “manifest”.

4.2 Android Permissions

Application vendors define a set of permissions for
each application. For installing an application, the
user has to approve as a whole all the permissions
the application’s developer has declared in the appli-
cation manifest. If all permissions are approved, the
application is installed and receives group member-
ships. The group memberships are used to check the
permissions at runtime. For instance, an application
Foo is given two group memberships net_bt and
inet when installed with permissions BLUETOOTH
and INTERNET, respectively. In other terms, the stan-
dard Unix ACL is used as an implementation means
for checking permissions.

Android 2.2 defines 134 permissions in the
android.Manifest$permission system class,
whereas Android 4.0.1 defines 166 permissions.
This gives us an upper-bound on the number of
permissions which can be checked in the Android
framework.

Android has two kinds of permissions: “high-level”
and “low-level” permissions. High-level permissions
are only checked at the framework level (that is,
in the Java code of the Android SDK). Android 2.2
declares eight low-level permissions which are either
checked in C/C++ native services (RECORD AUDIO
for instance) or in the kernel (e.g., when creating a
socket).

In this paper, we focus on the high-level permis-
sions that are only checked in the Android Java
framework.

4.3 Services and Permissions
An Android application is made of components which
can be: an Activity that is a user interface; a Service that
runs in background; a BroadcastReceiver (or Receiver)
that listens for “intents” (a kind of message for inter
process communication); a ContentProvider which is a
kind of database used to store and share data. Most
permissions are checked at the service level.

Android applications communicate with the operat-
ing system using a special kind of service called system
service. System services are specific services running in
a specific scope (called the “system server”) and allow
applications to access system resources (ex: GPS coor-
dinates). Those resources may be protected by An-
droid permissions to prevent access by unauthorized
applications. Permission checks associated to services
are mostly implemented in Java. Hence, the scope of
our paper consists of analyzing Android permissions
that are enforced in services in the Java framework. The
impact of this focus is discussed in Section 6.

It is important to understand the inner working of
system services to devise good static analyses (that
will be presented later in Section 5.2). We now de-
scribe how the applications communicate with sys-
tem services. Applications synchronously communi-
cate with system services through a mechanism called
Binder as presented in Figure 2. The first step to
communicate with a remote service is to dynamically
get a reference (interface) to the service by calling
Context.getSystemService() (step 1 in Figure
2). The next step is to call a method (method get-
Password from the AccountManager Service in Fig-
ure 2) from the interface on the object reference r (step
2 in Figure 2). A special component, called “binder”
is responsible for intercepting and redirecting that
service calls to the remote service that performs the
actual computation (steps 3 in Figure 2). The system
service is responsible for enforcing permission checks
(step 4 in Figure 2). To check that the caller’s appli-
cation declares the permission in its manifest (Section
4.1), the service calls one of the methods listed in Table
1 with the permission to be checked as parameter
(not shown in the Figure). This specific point in the
program is called Permission Enforcement Point or
PEP. In Figure 2, if the application has the correct
permission, the password is returned to the calling
application (step 5).

4.4 Technical Details on Android
We describe technical details of the Android system.
We leverage this knowledge during static analysis in
Section 5.

4.4.1 Android Boot Process
We describe how Android boots up and what kinds
of processes are launched. It is important to know
how to initialize system services when performing

5

Application Code

r = getSystemService();
p = r.getPassword();

Service Call

Binder

getPassword() {
checkPermission();
return password;
}

Account System Service

1

2

3

4

5

goulli goulli!

Fig. 2. A Simplified Illustration of the Communication
between an Android Application and a Permission Pro-
tected Service through the so-called “Binder”.

precise static analysis with Spark (Section 5.3). If
services are not properly initialized, the analysis may
be incomplete.

The first program to run on the device is the boot-
loader which provides support for loading, recovering
or updating system images. The early startup code for
loading the Linux kernel is very hardware dependent:
it first initializes the environment and only then starts
the architecture-independent Linux Kernel C code
by jumping to the start_kernel() function. Then,
high-level kernel subsystems are initialized (sched-
uler, system calls, process and thread operations ...)
the root filesystem is mounted and the init process is
started.

The init process creates mountpoints and mount
filesystems, sets up filesystem permissions and starts
daemons such as the network daemon, the zygote or
the service manager. The zygote is a core process from
which new Android processes are forked. The initial-
ization of zygote starts the system server which in
turn initializes system services and managers. System
services include the input manager service and the
wifi service. Managers include the activity manager
which handles user interfaces (activities).

Android’s boot process indicates that system ser-
vices and managers are instantiated and initialized at
boot time.

4.4.2 Android Communication

Components communicate with one another through
the binder, the Android-specific Inter Process Com-
munication (IPC) mechanism, and Remote Method
Invocation (RMI) system. Components do not com-
municate with the binder directly but instead rely
on three high-level abstractions of communication
called intent, query and proxy. Figure 3 focuses on
those communications at the Java level of the Android
framework. It shows that an application communicate
with the system server (and thus system services)
through proxies and stubs (abstraction on top of the
binder).

int checkPermission (String, int, int)
int checkCallingPermission (String)
int checkCallingOrSelfPermission (String)
void enforcePermission (String, int, int, String)
void enforceCallingPermission (String, String)
void enforceCallingOrSelfPermission (String, String)

TABLE 1
List of Permission Check Methods of the

android.content.Context Class (since Android
1.0 / API Level 1)

Binder

Activity—Service—Provider—Receiver

Service Manager

System ServerAndroid Application

Intent Query Proxy/Stub

Fig. 3. Android Communication Overview.

Intent. Intents describe operations to be performed.
They are used to start a new user interface screen (Ac-
tivity), trigger a component which listens to intents
(BroadcastReceiver) or communicate with services.

Query/Uri. Queries are used to communicate with
content provider components (which share data for
instance through a database). Queries use Uni-
form Resource Identifier (URI) to indicate the target
provider component on which the query must be
performed.

Proxy/Stub. System services extend stub classes
which describe methods they must implement. Sys-
tem services are mainly used by application to access
system resources. They are accessed by other com-
ponents through their public interface called proxy.
System services are running in the system server and
are registered to the service manager. An application
can get a reference to a registered service through the
service manager and can then communicate with the
service through its proxy (which uses the binder).

5 STATIC ANALYSES FOR ANDROID

Our goal is to define static analyses for extracting per-
mission checks. In essence, each analysis constructs a
call graph from the bytecode, finds permission check
methods and extracts permission names.

Obtaining a meaningful call graph is challenging.
We ran the default Soot’s CHA-Naive (Class Hierar-
chy Analysis) on Android 4.0.1. It takes more than one
week and outputs 31, 458/50, 029 (64%) methods with

6

API Bytecode Entry Points
Generation

Section 5.1.4

Entry Points
Initialization

Section 5.3.2

Framework
Bytecode

Service
Redirection

Section 5.1.2

Service Identity
Inversion

Section 5.1.3

Bytecode
Cleaning

Section 5.3.2

Services
Initialization

Section 5.3.2

Manager
Initialization

Section 5.3.2

Necessary steps before running CHA Android

Necessary steps before running Spark Android

Fig. 4. Bytecode Processing Before CHA-Android/Spark-Android Analyses. Entry points are generated using
methods from the Android SDK API bytecode. Bytecode from the framework is transformed to redirect call to
services to actual service classes, bypassing the ICC glue code. CHA-Android requires entry point generation,
service redirection and service identity. Spark-Android is more precise thus requires proper entry points,
services, and managers initialization.

no permissions, one method with a single permission5

and 18, 381/50, 029 (36%) entry points (methods) that
each needs more than 100 high-level permissions. This
is not meaningful. The reason is that Android has
been implemented using the object-oriented paradigm
and there are many subclasses of the core classes
(e.g., of Service6 , Activity7, etc.). By construction,
CHA outputs that all clients of those classes call all
their subclasses. This results in an explosion of edges
in the call graph and consequently an explosion of
required permissions. The main challenge for defining
static analyses for extracting permission checks is to get a
precise call graph.

We still aim at using CHA, but we need to cus-
tomize it for Android. We also aim at using Soot’s
Spark [21], an Andersen-like points-to analysis. Our
motivations for running CHA are as follows. First, it
enables us to identify key Android-specific analysis
components. Those components can be reused with
benefits in more sophisticated analyses such as Spark.
Second, it gives us a baseline for assessing the im-
provements given by Spark. Third, it gives a list of
API methods with no permission which do not require
to be analyzed by Spark. Eventually, the best-of-breed
of Android specific analysis components and Spark
enable us to obtain a fairly precise permission map.

Figure 4 represents Android-specific components
that manipulate the framework bytecode, and gener-
ate and initialize entry points. CHA-Android, the cus-
tomized version of CHA for Android, requires gener-
ation of the entry point, presented in Section 5.1.4,

5. This is the INTERNET permission checked in class an-
droid.webkit.WebSettings.

6. https://developer.android.com/reference/android/app/
Service.html

7. https://developer.android.com/reference/android/app/
Activity.html

service redirection, described in Section 5.1.2, and
service identity inversion, detailed in Section 5.1.3.
In addition to those components, Spark-Android, the
customized version of Spark for Android, requires
proper entry point initialization as well as services
and managers initialization. Those components are
described in Section 5.3.2.

In our experiments, the call graphs are generated
from the 50,029 entry points found in the Android
API version 4.0.1. All the analyses use Soot [20], a
widely used framework for the static analysis of Java
programs. The experiments run on a Intel(R) Xeon(R)
CPU E5620 @ 2.40 GHz running GNU/Linux Debian
3.11; the Java virtual machine 1.7.0 is given 4 Gb
of heap memory. The Android version used in the
experiments is 4.0.1 unless otherwise specified.

Section 5.1 presents the different components to
modify the bytecode and to extract permissions from
the call graph. Section 5.2 describes the CHA-Android
analysis and Section 5.3 the Spark-Android analysis.

5.1 Common Components for CHA and Spark
In this section we present three techniques that are
required for both CHA and Spark. String analysis
is used to extract the permission names from the
call graph. Service redirection enables the call graph
construction algorithm to link the service caller to the
service itself by bypassing the ICC glue code. Finally,
service identity inversion removes code from the call
graph which is executed as a system service itself and
thus is not relevant from the entry point caller’s point
of view.

5.1.1 String Analysis for Extracting Permissions from
Permission Enforcement Points
A basic call graph can only give the number of
permission checks but not the actual names of the

https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html

7

checked permissions because of the lack of string anal-
ysis to extract permission names from the bytecode.
As explained in Section 4.3, Permission Enforcement
Points (PEPs) are method calls to 6 methods of classes
Context and ContextWrapper (see Table 1 for a
list of PEPs). Those method calls can be resolved
statically. However, the actual permission(s) that are
checked are dynamically set by a String parameter or
sometimes, an array of strings. Thus, when a check
permission method is found in the call graph, a basic
analysis is only able to tell that a permission check
occurs, but not which precise permission is checked
because a call graph does not handle literal and
variable resolution by itself.

To overcome this issue, we have implemented a
String analysis as a Soot plugin whose pseudo code
is shown in Algorithm 1. Once PEPs are found, it
extracts the corresponding permission(s) (line 5). This
plugin performs an intra-method analysis and man-
ages the following scenarios: either (1) the permission
is directly given as a literal parameter, or (2) the
permission value is initialized in a variable which is
given as a parameter, or (3) an array is initialized
with several permissions and is given as a parameter.
In every case we do a backward analysis of the
method’s bytecode using Soot’s unit graphs which
describe relations among statements of a method. In
the case where only a single permission is given to
the method, statements in the unit graph containing
a reference to a valid Android permission String are
extracted and the permissions added to the list of the
permissions needed by the method under analysis.
In case of an array, all permissions of references to
Android permission Strings are added to the list.

It can happen that the permission string cannot be
found in the current method Mi’s body. This happens
when it is referenced from a local variable initialized
with one of the current method’s parameter P. The
solution is for the analysis to go one method down
in the method call-stack (lines 6-10). At this point the
analysis goes through the statements of Mi−1 looking
for a call to M. When a call is found the parameter P
is extracted and the string analysis starts again from
there.

At this point, we have a component to extract
permission strings from the call graph. In the next
section, we present how to handle service redirection
to avoid having imprecise permission sets.

5.1.2 Service Redirection: Handling Binder-based
Communication
Permission Size Explosion. A call to a service method
usually goes through a manager which gets a refer-
ence to a system service called proxy. It is always
a method call on a proxy which results in data
marshaling from the proxy through the binder to
the stub on top of which lays the real system service
method. All data transfers between the proxy and stub

Algorithm 1: Concrete Permissions Names Extrac-
tion (String Analysis).

Input: Method Call Stack, Target Method, Target
Method Parameter

Result: Set of Permission Strings
1 stack ← Method Call Stack;
2 tm ← Target Method;
3 tp ← Target Parameter;
4 pSet ← set ();
5 pSet ← findPermission (tm, tp);
6 if pSet is empty then
7 tp ← getCurrentMethodParameter ();
8 N ← size(stack)− 1;
9 r ← StringAnalysis (stack[1...N], stack[N], tp);

10 pSet ← pSet ∪ r;

11 return pSet;

API
methods

Binder
transact

method

Services
onTransact

methods

Services
target

methods

ApiS1.1

S1

Sg

Sh

Si
...

S1m1 p0
S1m2 p0
S1m3 p1
S1m4 −
S1m5 p2
S1m6 p0

S2m1 p3...

S3m1 p6...

...

Fig. 5. The number of edges explodes when an
API method reaches the transact method of the
Binder class. This node leads to an explosion in the
number of permission since it reaches all services’
onTransact methods and each of those reaches all
methods of their service. Those methods check for
different permissions. Solving this problem boils down
to short-circuit the low level transact and onTrans-
act methods to directly reach the method of inter-
est. The solution is represented by the dashed arrow
which directly links an API method to its corresponding
method in the right service. Thus, the API method is not
mapped to permissions {p0, p1, p2, p3, p6, ...} but only to
permission p0.

go through the transact() method which calls the
onTransact() method. This method calls the right
method on the system service side according to an
integer value. This integer value is not determined
when doing a static analysis. Thus, as illustrated in
Figure 5, all methods of system services are added

8

as edges in the call graph. Moreover, as all system
services implement a stub, when constructing the
call graph using CHA, all system services stubs’
onTransact() methods are potential method calls
from every method call on a proxy object and are
thus added to the graph. A consequence of this is the
explosion of the permission set size we observe when
running CHA. In short, when doing a naive analysis
from the point of view of services, any system service
method call does have edges to all methods of every
system service.

Service Redirection. Figure 2 illustrates a com-
munication between an application and a service.
The communication is done through the binder. As
explained in the previous paragraph, the problem is
that analyzing binder based communications leads
to an explosion in the number of permission. The
solution, illustrated Figure 5, is to bypass the binder
(proxy/stub) mechanism by directly connecting a call
to a service method to the corresponding method
within the remote service. In Figure 2 edges from
method r.getPassword() to the binder and from
the binder to service method getPassword() are re-
moved. Only the direct edge from the calling method
to the called method (not shown in the Figure) is kept.
As presented in Figure 4 this is the first transformation
done on the bytecode of the Android framework.

We now know how to redirect system services prop-
erly. However, it may happen that system services
execute code on their behalf and not on the behalf
of the original caller. The next section explains how
we remove this code from the call graph.

5.1.3 Service Identity Inversion
In Android, services can call other services either
with the identity of the initial caller (by default) or
with the identity of the service itself. In the later
case, remote calls are within clearIdentity() and
restoreIdentity() method calls. When using the
service’s own identity, permission checks are not done
against the caller’s declared permissions, but against
the service’s declared permissions. Since our goal
is to compute the permission gap of an application
(and not of system services), we can safely discard
all permission checks that occur between calls to
clearIdentity() and restoreIdentity().

For instance, let us assume that service S requires
and declares permission θ which is not declared by
application A. If A calls S, the code of S is executed
with the identity of A itself which would require A to
declare θ. To avoid this, the portion of code requiring θ
is executed with S’s identity. When we encounter calls
to clearIdentity() or restoreIdentity(), we
use an intra-procedural flow-sensitive analysis to dis-
card permission checks that occur between those calls.

Figure 4 shows that the Service Identity Inversion
step is done after the Service Redirection transforma-
tion.

Sections 5.1.2 and 5.1.3 explain how to construct a
call graph taking into account specificities of the An-
droid system. As we do analyze a framework and not
a traditonnal application, the call graph construction
starts from entry points of the framework and not
from a main method. The next section explains how
we construct a call graph from entry points.

5.1.4 Entry Points Handling for CHA

In the case of an API (such as the Android API),
the problem is that there is no “main” but N classes
totalizing M entry point methods. Our solution is
to build one call graph per public method of the
Android API by creating one fake method mclassi

(i ∈ (1, . . . , N)) per public class of the framework
(for Android, android.* and com.android.*). The
role of method mclassi is to create an instance o of
classi and to call all methods of classi on o. We
also build a unique artificial main calling all mclassi

methods. This main method is the unique start point
of the analysis. As presented in Figure 4, entry points
are constructed using methods from the Android API.

Section 5.2 presents CHA-Android which leverages
the service redirection, service identity inversion and
entry point construction components.

5.2 CHA-Android

We perform the map construction with CHA for three
reasons. First, it enables us to identify key Android-
specific analysis components that can be reused with
benefits in more sophisticated analyses such as Spark.
Then, it gives us a baseline for assessing the improve-
ments given by Spark. Finally, it gives a list of more
than 30k API methods with no permission which do
not require to be analyzed by Spark.

CHA-Android is a CHA-based static analysis for
extracting permission checks on the Android frame-
work. It uses the string analysis presented in Section
5.1.1, the service redirection (Binder) of Section 5.1.2,
and the service identity inversion explained in Section
5.1.3. We enrich it with an optimization that we now
describe.

5.2.1 Call Graph Search Optimization

Section 5.1.1 describes how to extract permission
names. This Section explains how permission names
are propagated through the graph from PEPs. Al-
gorithm 2 propagates permission sets through the
graph. It proceeds in three steps. The first step (line
2) traverses the graph using depth first search and
keeps track of the methods already visited. During
the traversal it finds where permissions are checked
and extracts the permission names (see string analysis
above). This first step makes the analysis much faster
than the naive approach since no method is analyzed
more than once. Steps two and three make sure that

9

Algorithm 2: Permissions Extraction and Propaga-
tion.

Input: Call Graph
Result: Set of Methods with their Permission Sets

1 g1 ← Call Graph;
2 DephtFirstSearchAndPermissionExtraction (g1);
3 SCC ← TarjanFindSCC (g1);
4 g2 ← ReplaceSCC (g1, SCC);
5 PropagatePermissions (g2);

permissions of already analyzed method are propa-
gated in the graph. During the second step (lines 3-
4) we use Tarjan’s algorithm [32] to replace Strongly
Connected Components (SCC) from the graph by
a single node. This essentially removes loops from
the graph and simplifies the propagation of permis-
sion names. During this step one has to be careful
not to remove essential parts of the graph such as
methods that check permissions since permissions are
not propagated at this stage. Concretely, if a check
permission method is part of an SCC it must not
be removed from it otherwise permissions mapped
to this method would not be propagated and thus
be lost. The third and last step (line 5) propagates
permissions throughout the graph.

This algorithm has a linear complexity in the num-
ber of nodes and edges. During the first step the graph
is searched using depth-first search and methods are
never analyzed twice: this step is bound linear in
the number of edges and nodes. Tarjan’s algorithm
is bound linear in the number of nodes and edges.
The last step propagates permissions through a depth
first search of the graph where SCCs are replaced.

5.2.2 Empirical Results

Permission Strings Resolution. Let us now analyze
the efficiency of the string analysis. The distribution
of the results of string analysis is presented in Table 2.
We observe that 91.89% of the permission string anal-
yses only check a single permission and that 83.25% of
the analysis the permission string can directly be de-
termined as a literal parameter. Hence, it is a common
practice in the Java codebase of Android to (1) protect
a method with only one or two permissions and (2)
to make reference to permission strings and call the
check permission method in the same method body.
Those results show that for 99.08% of permission
checks the permission string is found using a string
analysis.

Sometimes (0.92%), it is not possible to resolve
permission strings: in 12 cases permissions are related
to URIs; in two cases permissions are read from the
Binder (Parcel).

Execution time. On Android, CHA-Android ana-
lyzes 50,029 entry points in 4 minutes user time or 10

Total # analyses 1,516 (100.00%)
String found

total 1,502 (99.08%)
with 1 permissions 1,393 (91.89%)
with 2 permissions 109 (7.19%)
with only direct strings 1,262 (83.25%)
with flow analysis 183 (12.07%)
with strings in array 57 (3.76%)

String not found
total 14 (0.92%)
with URI read perm. 6 (0.40%)
with URI write perm. 6 (0.40%)
with read from parcel 2 (0.13%)

TABLE 2
The Kinds of Permission Specification as Found by

Our String Extraction Analysis.

minutes real time. This shows that CHA-Android is
able to scale on a large scale real world Framework.

Permission Set # entry points
with 0 permissions 32,924 (65.8%)
with 1 permissions 39 (0.08%)
with 2 permissions 55 (0.12%)
with > 65 permissions 17,011 (34.0%)

50,029 (100%)

TABLE 3
CHA-Android Permission Sets.

Entry Point Permission Sets. Running CHA-
Android yields Table 3 which shows the permis-
sion set size for the entry points. As CHA-Android
correctly models system service communications, the
number of entry points requiring no permissions in-
creases from 64% to 65.1% (31,458 to 32,429) (some
service methods are not protected by permissions).
The number of entry points with one and two permis-
sions increases from less than 0.01% to 0.08% (1 to 39)
and from 0% to 0.12% (0 to 55) respectively (service
method redirection avoids explosion in the number
of edges in the call graph and thus the number of
permissions).

Nevertheless, 34% (17,011) of entry points still have
an over-approximated permission set. This is caused
by the imprecision of the points-to set of CHA. This
results in an explosion in the number of permissions.
An improvement would be to develop other domain
specific optimizations: handling other Android spe-
cific points (e.g. content providers, handlers and mes-
sages) is similar to handling service communications
and would not have an impact on the contributions
of this paper.

The following Section 5.3 presents the Spark based
analysis. The analysis tackles Spark specific issues
such as entry point initialization or Android specific
issues such as service initialization.

10

5.3 Spark-Android
We run Spark in context-insensitive, path-insensitive,
flow-insensitive, field-sensitive mode to generate the
call graph. In context-insensitive mode, every call to
the same method is merged to a single edge inde-
pendently of the context (receiver and parameters
values). A path-insensitive analysis ignores condi-
tional branching hence takes into account all paths of
method bodies. The call graph construction is flow-
insensitive since it does not consider the order of exe-
cutions of instructions. It is also field-sensitive because
it differentiates the points-to solution associated with
different named object fields.

We first run a naive version of Spark-Android in
Section 5.3.1 to illustrate the need to correctly initial-
izing objects on which API methods are called as well
as method’s parameters.

Section 5.3.2 describes how we initialize entry
points. It also explain another Spark subtlety: why
and how system services must be initialized.

5.3.1 Naive Usage of Spark
As for CHA, we “naively” run off-the-shelf Spark
to get a first understanding of the main problems
that occur when analyzing the Android API. This
gives us a key insight, Spark discards 96% of the
API methods to be analyzed. The reason is that Spark
does not work on receiver objects whose value is
null (i.e. methods called on references initialized by
default with null do not appear in the graph). The
four percents of analyzed methods are Java static
methods which can be called without instantiating
their classes. This means it is not possible to run
a Spark based analysis without correctly initializing
entry points. Even with key Android-specific static
analyses of CHA, a naive usage of Spark completely
fails. Consequently, we need Spark specific analysis
components.

5.3.2 Spark Specific Analysis Components
Processing Time. Our first experiments show that
Spark does not scale to the size of the Android frame-
work. As we experience that Spark is time consuming
when processing some entry points, we empty specific
methods of certain classes to be able to compute
permissions sets in a realistic amount of time (i.e., less
than one day).

Analyzing time consuming entry points always
leads to the windowing system classes. The window-
ing system is at the heart of Android components such
as activities. It is responsible for the GUI (Graphical
User Interface) management, and has relationships
with numerous GUI abstractions such buttons or text
fields and methods to start Android components such
as other activities. When the call graphs hits a com-
ponent of the windowing system it can grow in such
huge proportion, because of the imprecision in the
points-to sets, that the search in it triggers a timeout.

We make the hypothesis that classes responsible
for GUI rendering and the windowing system man-
agement do not link to any permission check. Thus,
we remove code of their methods and launch the
experiments again. Removing the code means that (1)
Spark does not construct the call graph for this code
and thus that (2) the traversal of the call graph is much
faster. With those modifications, the computation time
of the permission map is much faster, terminates in
less than 11 hours and does not trigger any timeout.

Entry Points Handling for Spark. Spark-Android
leverages artificial methods generated for CHA (see
Section 5.1.4). However, it must initialize parameters
of the 50,029 entry point methods of the Android API.
Each receiver object o on which to call Android API
methods as well as every method parameter p are ini-
tialized by calling generateo() and generatep(),
respectively. This tailor made method generates all
possible instances of type P (i.e., over-approximation).
Parameter initialization is necessary since one does
not know a priori the effect of parameters on per-
mission checks. Since Spark is field-sensitive, non-
initialized parameters result in missing edges in the
call graph.

AccountManager m = getSystemService("account");
m.getPassword(a);

public class AccountManager {
IAccountManager mServ;
public String getPassword(Account a) {

// the callgraph stops here because
// mService is null (see Figure 4)
return mServ.getPassword(a);

}
}

Application code API/System code

Fig. 6. How Spark Discards Call Graph Edges Be-
cause of ”null” Objects.

Importance of Service Initialization for Spark.
A Spark based approach does require proper ini-
tialization of the analyzed modules of the Android
framework. The reason is that, as presented in Figures
6 and 7, skipping the initialization phase may result
in important fields, containing references to system
services for instance, to only point-to null. Spark does
not generate edges for method calls on references
which can only point to null.

Figure 6 represents a code snippet which
retrieves an AccountManager object and calls
method getPassword() on it. At this point
AccountManager’s service reference mServ can
only point to null. Thus, mServ.getPassword()
cannot be executed and would not be represented
in a field-sensitive call graph. In other words, Spark
generates an edge for the AccountManager object

11

AccountManager m = getSystemService("account");

public class ContextImpl {
public Object getSystemService(String ts) {
if (ts.equals("account") {

return getAccountManager();
} else ...

}
private AccountManager getAccountManager() {
IBinder b; IAccountManager mServ;
// returns null
b = ServiceManager.getService("account");
// returns null because b is null
mServ = IAccountManager.Stub.asInterface(b);
// is null
return new AccountManager(this, mServ);

}
}

public class ServiceManager {
// sCache initialized at boot time
HashMap<String, IBinder> sCache;
public static IBinder getService(String name) {
// statically, getService() returns null
return sCache.get(name);

}
}

Application code API/System code

Fig. 7. How Spark Propagates ”null” Due to Initializa-
tion that is not Statically Visible.

but not for the service method call within it because
the service reference (mServ) points to null.

This AccountManager object is created by the
Context class as described in Figure 7. To simplify,
only AccountManager objects are created in get-
SystemService(). To create an AccountManager
object a reference to the AccountManagerService is
required. This reference is fetched through a call to
getService(). However, since ServiceManager
has not been initialized, ServiceManager’s sCache
map is empty. So, getService() always returns
null.

Service Initialization for Static Analysis As de-
tailed in Section 4.4, system services are initialized in
the SystemServer class. Methods from this class are
not present in the call graph generated from entry
points of the Android API since they are only called
at system boot time.

To simulate system services initialization we create
a static object and an initialization method for each
concrete system service. Those objects are initialized
by adding edges to the service initialization methods
to the call graph. Moreover, the original bytecode
is modified to replace calls to getService by a
reference to the newly created static objects.

Manager Initialization for Static Analysis Android
applications have two possibilities to communicate
with system services
• The first possibility is to directly get a reference

to the service8 through the service manager and

8. also called a binder to the service

then to call remote procedures of the service
• The other possibility is to use another interface

called Manager. The manager is created from the
system Context class and has itself a reference to
the service to directly communicate with it and
acts as a proxy for the application (as show in
Figure 6).

Managers are wrappers to ease communication
with system services. We redirect calls to getSys-
temService(String s) to our own methods. To be
able to do that, we used string analysis to compute a
mapping between strings given to getSystemSer-
vice and the code which initializes the corresponding
manager. Each call to getSystemService is ana-
lyzed to extract the string parameter to know to which
method it must be redirected. To each string corre-
sponds one Manager and thus one method whose role
is to initialize the manager.

We also provide our own getService() method
that returns properly initialized services as presented
in Section 5.3.2. All calls to the original getSer-
vice() are redirected to our own methods. Method
getSystemService returns a manager whereas
method getService() returns an interface to a ser-
vice.

The original bytecode of the Android framework is
modified to reflect services and managers initializa-
tion. The resulting bytecode can be analyzed by any
static analysis tool and is not specific to Soot.

5.3.3 Empirical Results
Spark-Android runs in 11 hours. Permission set sizes
for entry points when running Spark-Android are
described in Table 4. The number of entry points
with a single permission is 471. Furthermore, 48 entry
points have a permission set of two, 10 of 3 and three
have more than three permissions. The total number
of entry points is less than the one for CHA since
abstract classes cannot be initialized with Spark. No
method associated with those classes is represented
in the set of entry point methods.

Permission Set # entry points
with 0 permissions 42,895 (98.77%)
with 1 permissions 471 (1.08%)
with 2 permissions 48 (0.11%)
with 3 permissions 10 (0.02%)
with ¿ 3 permissions 3 (¡ 0.01%)

43,427 (100%)

TABLE 4
Spark-Android Permission Sets.

5.4 Recapitulation
We have presented the core technical issues we
encountered while implementing our approach. We
think that those problems may arise in other

12

0 1 2 3

35,000

40,000

of permissions

#
of

en
tr

y
po

in
t

m
et

ho
ds

CHA-Naive
CHA-Android
Spark-Android

Fig. 8. Cumulative Plot of the Number of Methods per
Permission Set Size (The higher, the better).

permission-based platforms than Android, and that
identifying them and their solutions can be of great
help for future work. Last not but not least, those
points are crucial for replication of our results.

Section 6 evaluates the CHA and Spark based anal-
yses.

6 DISCUSSION

In Section 5 we have presented three analyses: CHA-
naive, CHA-Android and Spark-Android. CHA-naive
is the default analysis provided by Soot. CHA-
Android takes into account specificities of the An-
droid system such as service redirection and system
identity inversion. Spark-Android also take into ac-
count those specificities but leverages a more precise,
field-sensitive call graph construction algorithm. How
do those three analyses perform compared to others?
What are their limitations? This section answers those
questions.

6.1 CHA versus Spark
Figure 8 is a cumulative plot of the number of entry
points function of their permission set size. By cu-
mulative we mean that at each permission set size
the number of methods is added to the number of
methods at the previous permission set size. It first
shows that the more precise an analysis is, the bigger
the set of entry points with zero permission will be.
This result reflects the fact that with precision, ”false
positive” edges are removed from the graph. Then,
the plot (Spark-Android) highlights that, when only
system services communication are handled, Spark
yields the best results as it finds more methods with
a permission set of one, two or three than all other
analyses. Moreover, Spark never finds an entry point
with more permission than CHA. It finds the same

Permission set Number of
Methods

#API Methods in PScout 593
#API Methods in Spark and PScout 468 (100%)
Identical 289 (61.75%)
we find more precise permission checks 176 (37.60%)
we find more permission checks 3 (0.64%)

TABLE 5
Comparison between Our Results (Spark-based

analysis) and Pscout’s ones [3] (CHA-based analysis)
using Android 4.0.1.

permission set (with one or more permission) than
with CHA for 91 entry points. Spark finds a smaller
permission set for 428 entry points.

6.2 Comparison with PScout
PScout [3] relies on a CHA based approach and gener-
ates a permission list for classes in the Android frame-
work. We only consider classes of the Android 4.0.1
API. There are 593 methods in the results of PScout
that have more than one permission and 468 methods
that are both in PScout and Spark. Among those 468
methods, 289 (61.75%) have the same permission size
in both PScout and Spark and 176 (37.60%) have a
smaller permission set size with our approach.

For instance, for method exitKeyguardSe-
curely(...) of class KeyguardManager, PScout
finds five permissions whereas Spark only one, DIS-
ABLE_KEYGUARD. The official documentation con-
firms that only one permission is required as
well as the runtime data from Felt [13]. Spark
also misses a permission for method AudioMan-
ager.setMicrophoneMute(boolean). It is be-
cause we do not handle C/C++ native code where
this permission check is done. Table 5 summarizes
the results of this comparison. Our analysis yields more
precise results than a pure CHA-based approach.

Interestingly we also find three methods (0.64%) for
which our Spark approach finds more permissions
than PScout’s approach. We manually checked the
Vibrator class where the involved methods are
defined and there is a path to a method checking
permission WAKE_LOCK. PScout probably did not cor-
rectly link those specific entry point methods to all
methods they can reach, thus missing the WAKE_LOCK
permission.

6.3 Comparison with Felt et al.
Let us now compare our results obtained with static
analysis [5] with the results of Felt et al. obtained
through testing [13]. Both extract a list of required
permissions for each method of the Android 2.2
framework. Android 2.2 features 134 permissions,
eight of them being low-level permissions that we
do not analyze. Felt et al.’s results contain 673 meth-
ods mapped to high-level permissions. We analyze

13

Permission set Number of
Methods

#Methods analyzed in [13] 1282
#Methods with HL perm. only 673
Identical 552 (82.3%)
we find more permission checks 119 (17.7%)

one more 118 (17.6%)
two more 1 (0.1%)

we find less permission checks 0 (0%)

TABLE 6
Comparison between Our Results and Felt et al.’s

ones [13] (Based on Testing) using Android 2.2. Only
methods with high-level permissions are considered.

only 671 methods because 2 methods are related
with application-specific objects provided in Felt’s
approach that are not available in our static analysis
approach.

For a given method, we either find the same per-
mission set, or a larger one. Our method never misses
a permission that Felt et al. describe.

More precisely, we infer the same permission set
per method signature for 552 methods (82.3% of com-
monly analyzed methods). There is one additional
permission for 119 methods (1 additional permission
for 118 methods, 2 for 1 method). There is no method
for which we miss a permission, Table 6 summarizes
those results. Let us now discuss the discrepancy
between our results.

The additional permissions are due to either ana-
lyzing irrelevant code or to missing input data in Felt
et al.’s approach. In the latter case, we are able to find
permissions that are checked within specific contexts
that were not taken into account by the generated
tests of Felt et al. For instance, MOUNT_UNMOUNT-
_FILESYSTEMS is only checked for method Mount-
Service.shutdown() if the media (storage device)
is “present not mounted and shared via USB mass storage”
(from the API documentation). Another permission,
READ_PHONE_STATE is needed for method Caller-
Info.getCallerId() only if the phone number
passed in parameter is the voice mail number. Those
test cases were not generated by Felt’s testing ap-
proach. In real applications, test generation techniques
cannot guarantee a comprehensive exploration of the
input space.

To us, these findings are typical when comparing a
static analysis approach against a testing one: static
analysis sometimes suffers from analyzing all code
(including debugging and dead code, or code run
in specific runtime environments), but is strong at
abstracting over input data. On the other hand, testing
must simulate as close as possible the production en-
vironment, but is cursed to always miss very specific
usage scenarios.

Those results highlight the complementarity be-
tween static analysis and testing in the context of

permission inference. We think that the static anal-
ysis approach is complementary to the testing ap-
proach. Indeed, the testing approach yields an under-
approximation which misses some permission checks
whereas the static analysis approach yields an over-
approximation in which those missing permission
checks are found. Using both approaches in conjunc-
tion would enable developers to obtain a lower and an
upper bound of the permission gap. In particular, for
a given Android applications, if both testing and static
analysis approaches yield the same list of permissions,
this strongly suggests that this list is the “correct”
list of required permissions. As testing could miss
permissions and static analysis may not model all
Android specificities this cannot be a strong claim.

6.4 Soundness
We have shown in this paper that the Android frame-
work has many specificities that may threaten the
soundness of static analysis. In this context, soundness
refers to having no false negatives (no missed permis-
sion checks). Furthermore, the concept of soundness
refers to a specific scope: in our cases, checks of high-
level permissions inside Android services.

For CHA and Spark-based analysis, such as PScout,
CHA-Android or Spark-Android, the manipulation of
the call graph based on domain-specific knowledge
(such as the bytecode redirection, and windowing
system methods emptying) is sound if and only if all
cases are envisioned. Given the complexity and scale
of a framework such as Android, this completeness is
hard to prove.

For Spark-based analysis, the analysis is sound if
and only if the object and static fields are correctly
initialized. Hence the analysis may be sound for some
entry-points and unsound for others. For a frame-
work such as Android, there is no oracle for formally
answering those questions. However, for those entry
points when the CHA-based results and the Spark-
based results are identical it is a strong piece of
evidence of soundness. For the rest, comparison with
documentation or runtime data is required.

Finally, our results hold as far as there is no serious
bug in the implementation of any part of the static
analyses (e.g., entry point initialization and bytecode
redirection), as well as in the glue and measurement
code we wrote.

6.5 The Impact of Service Identity Inversion
A legitimate question to ask is whether or not service
identity inversion has an impact on the resulting
permission set. To answer that, we ran Spark-Android
with and without activating service identity inversion.
Within the set of entry points which did not time
out, two have a bigger permission set when service
identity inversion is turned off. For instance, method
<android.net.ConnectivityManager boolean

14

requestRouteToHost(int,int)> has one more
permission CONNECTIVITY_INTERNAL when service
inversion is disabled. This permission is not required
for the entry point according to the official documen-
tation9 which validates the usefulness of the service
identity inversion building block.

Service inversion may only impact a few entry
points but not taking it into account leads to wrong
permission sets.

6.6 Limitations

6.6.1 Native Code

The Android framework is a real-world large-scale
framework, featuring heterogeneous layers written
in different languages. For Android 2.2 most An-
droid permissions (126/134) are checked in the
Android Java framework only. Our approach is
complete for these 126 permissions, but incom-
plete for the eight permissions checked in na-
tive C/C++ code. These eight permissions are:
BLUETOOTH_ADMIN, BLUETOOTH, INTERNET, CAM-
ERA, READ_LOGS, WRITE_EXTERNAL_STORAGE, AC-
CESS_CACHE_FILESYSTEM and DIAGNOSTIC.

6.6.2 Reflection in the Framework

If the framework uses reflection, then the call graph
construction is incomplete by construction. Fortu-
nately, the Android framework uses reflection in only
7 classes. We manually analyzed their source code.
Five of those classes are debugging classes. The View
class uses reflection for handling animations. Finally,
the VCardComposer uses reflection in a branch that
is only executed for testing purpose. In all cases,
the code is not related to system resources hence
no permission checks are done at all. This does not
impact the static analysis of the Android framework.

6.6.3 Dynamic Class Loading

The Java language has the possibility to load classes
dynamically. Static analysis cannot deal with this since
the loaded classes are only known at runtime. We
found that eight classes of the Android system are us-
ing the loadClass method. After manual check, six
of them are system management classes and are either
not linked to permission checks (ex: instrumenting an
application) or have to be accessed through a service.
Two are related to the webkit package. They are
used in the LoadFile and PluginManager classes.
In both cases, permissions are checked before loading
classes, and not inside the loaded classes. Thus, there
is no missed permission enforcement point either.

9. http://developer.android.com/reference/android/net/
ConnectivityManager.html

6.6.4 Spark
Our model of the Android framework focuses on
services and missed the initialization of other Android
components (e.g., content providers). In other words,
Spark is sound with regards with our model of An-
droid components.

7 COMPUTING PERMISSION GAPS

We now have static analyses to compute the mapping
between Android API methods and their required
permissions. This section first presents a method to ef-
ficiently compute the required permission set and the
corresponding permission gap (permissions declared
but not used), if any. Then we present the results of an
empirical study that show the existence of permission
gaps in the wild.

7.1 A Calculus for Permission Analysis
This section describes the permission gap inference
as a calculus on top of a boolean matrix algebra.
Permission inference is at heart a reachability analysis
(does the application reach a permission check?), the
goal of this calculus is to ”factorize” the static analysis,
so as to be much more efficient.

Let app be an application. The access vector for app is
a boolean vector AVapp representing the entry points
of the framework under study. Thus, the length of
vector AV is the number of entry points of framework
F . An element of the vector is set to true if the
corresponding entry point is called by the application.
Otherwise it is set to false. Let us consider a framework
with four entry points (e1, e2, e3, e4), and an applica-
tion foo that reached e1, e2 and e3 but not e4. AVapp
reads:

AVfoo = (1, 1, 1, 0)

We define the permission access matrix M as a
boolean matrix which represents the relation between
entry points of the framework and permissions. The
rows represent entry points of the framework and
the columns represent permissions. A cell Mi,j is
set to true if the corresponding entry point (at row
i) accesses a resource protected by the permission
represented by column j. Otherwise it is set to false.
For a framework with four entry points (e1, e2, e3
and e4) and three permissions (p1, p2 and p3), the
permission access matrix reads:

M =


p1 p2 p3

e1 1 0 0
e2 1 0 0
e3 0 0 0
e4 0 1 0


. . . meaning that e1 and e2 require permission p1, e3
requires no permission and e4 requires permission p2.

Let app and F be an application and a framework
respectively. The inferred permissions vector, IPapp,

http://developer.android.com/reference/android/net/ConnectivityManager.html
http://developer.android.com/reference/android/net/ConnectivityManager.html

15

is a boolean vector representing the set of inferred
permissions for application app. By using the boolean
operators AND and OR instead of arithmetic multipli-
cation and addition in the matrix calculus, we have:

IPapp = AVapp ×M

A cell IPapp(k) equals to true means that the permis-
sion at index k is required by app. Using AVapp and M
from the previous examples, the inferred permissions
vector for app is:

IPapp =
(
1 1 1 0

)
·


1 0 0
1 0 0
0 0 0
0 1 0


IPapp =

(
1 0 0

)
. . . meaning that the application should declare and
only declare permissions p1.

7.2 Extraction of M and AV

The permission access matrix M is based on a static
analysis of framework F . As shown in Section 5,
we first compute a call graph for every entry point
of the framework and then detect whether or not
permission checks are present in the call graph. A
permission enforcement point (PEP) is a vertex of a
call graph whose signature corresponds to a system
method that checks permission(s). Each PEP is asso-
ciated with a list of required permissions permsPEP .
Matrix M is constructed as follows: it is a matrix of
size (—entry points— × —high level permissions—);
all elements of M are initialized to false; for each ei
that reaches one or more PEP, and for each permission
j in permsPEP , M(i, j) = true. In other terms, M is
a condensed version of the reachability information that is
latent in call graphs.

Let us take the example of Figure 1 in Section
3. It shows a framework with four entry points
(e1, e2, e3, e4), and three permissions (p1, p2, p3). For
every of those entry points a call graph is constructed.
Three of those call graphs have a PEP node: e1 and e2
have PEP ck1 which checks permission p1 and e4 has
PEP ck2 which checks permission p2. On the figure a
dashed arrow connects each PEP to the permission(s)
it checks. The framework matrix is then matrix M
presented above (see Section 7.1).

Extracting AV simply means listing the list of entry
points of a framework F called by an application app.
The application example in Figure 1 uses a single
entry point, and AVex = (1, 1, 1, 0).

7.3 Computing the Permission Gap
The permission gap is the difference between the
permissions extracted from IPapp and the declared
permissions Pd(app). In Figure 1, using matrix Mex

and vector AVex of the example framework and ap-
plication, we obtain a list of inferred permissions only

containing p1. If the application declares p1 and p2, the
permission gap is {p2}.

We ran our tool on two datasets of Android appli-
cations. The first comes from an alternative Android
Market10 and contains 1329 android applications. For
the second one, we consider the top 50 downloaded
applications of all 34 top-level categories of the Of-
ficial Android Market, as well as the top 500 of all
applications and the top 500 of new applications
(on February, 23rd 2012). After removal of duplicates
(the applications appearing in several rankings), the
second dataset contains 2057 applications.

Alternative Android Market: We discard 587 ap-
plications that use reflection and/or class loading. Of
the 742 remaining applications, 94 are declaring one
or more permissions which they do not use. Con-
sequently, we identify a permission gap for 94 Android
applications. We define the “area of the attack surface”
with respect to permission gaps, as the number of
unnecessary permission. In all, among applications
suffering from a permission gap, 76.6% have an attack
surface of 1 permission, 19.2% have an attack surface
of 2 permissions, 2,1% of 3 permissions and also 2,1%
of 4 permissions.

Official Android Market: We discard 1378 appli-
cations that use reflection and/or class loading. On
the 679 remaining applications, 124 are declaring one
or more permissions which they do not use. In all,
among applications suffering from a permission gap,
64.5% have an attack surface of 1 permission, 23.4%
have an attack surface of 2 permissions, 12.1% of 3 or
more permissions.

To sum up, those results show that permission gaps
exists, and that our approach allows developers to fix
the declared permission list in order to reduce the
attack surface of permission-based software.

8 RELATED WORK

We have presented an approach to reduce the attack
surface of permission-based software. The concept
of “attack surface” was introduced by Manadhata
and colleagues [22], it describes all manners in which
an adversary can enter the system and potentially cause
damage. This paper describes a method to identify
the attack surface of Android applications, which
is an important research challenge given the sheer
popularity of the Android platform. In the context of
Android, reducing the attack surface is adhering to
the principle of least privileges introduced by Saltzer
[30].

8.1 On the Java Permission Model

While the Android permission model is different from
the one implemented in Java, the following pieces of

10. http://www.freewarelovers.com/android

http://www.freewarelovers.com/android

16

research present related and relevant points to put our
contribution in perspective.

Koved and al. described a new static analysis [19]
to generate a permission list for a Java2 program
(in the Java permission model). Geay et al. [16]
presented an improved methodology. We also use
static analysis but in the context of Android which
differs from a Java environment especially with
respect to the binder mechanism linking Android
API to services. As shown in our evaluation, the
binder prevents off-the-shelf Java static analysis tools
to resolve remote call to a service.

Pistoia et al. [28] presented a static analysis to
identify portions of the code which should be made
privileged. This issue does not arise in the Android
framework since code is not privileged per se, the
access control is instead done at entry points. This
means that the Android framework designers must
be careful of creating unique entry points protected
by permission enforcement points, but does not
impact our static analysis.

Centonze et al. [7] analyzed role-based access
control (RBAC) mechanisms using static analysis.
When a protected operation manipulates data, this
data should not be directly or indirectly accessible
by a path not defined in the policy. If not, the
operation is said to be location-inconsistent. The tool
they developed can check whether or not an RBAC
policy for JavaEE programs is location consistent
or present some flaws. The Android system defines
permissions which protect operation which in turn
manipulate protected data. Our goal consists of
computing permission gaps which may reveal a
violation of the principle of least privilege. Whether
Android protected operations are location consistent
is out of scope of this paper.

Also related to role-based access control, Pistoia et
al. [27] formally model RBAC and statically check
the consistency of a JavaEE based RBAC system. We
check that permission lists of Android applications
respect the principle of least privilege. The concepts
are the same (Android permissions could be approxi-
mated to roles, and we check which roles are needed
at every point of the Android framework) but the
target systems are not. Interestingly, we use a similar
approach for solving the Binder problem as they do
for solving the remote method invocation problem:
instead of statically analyzing the Binder/RMI code
which would not resolve the method, a mapping
is computed from the call to a remote method to
the remote method itself. A major difference though
is that in the case of Android system services and
context must be initialized beforehand to simulate a
correct system state.

8.2 On the Android Permission Model

The Android security model has been described as
much in the gray literature [12], [31] as in the official
documentation [1]. Different kinds of issues have
been studied such as social engineering attacks [18],
collusion attacks [23], privacy leaks [17] and privilege
escalation attacks [15], [9]. In contrast, this paper
does not describe a particular weakness but rather
a software engineering approach to reduce potential
vulnerabilities.

However, we are not describing a new security
model for Android as done by [25], [26], [10], [8], [6].
For instance, Quire [10] maintains at runtime the call
chain and data provenance of requests to prevent
certain kinds of attacks. In this paper, we do not
modify the existing Android security model and we
devise an approach to mitigate its intrinsic problems.

Also, different authors empirically explored the
usage of the Android model. For instance, Barrera
et al. [4] presented an empirical study on how
permissions are used. In particular, they used
visualizing techniques such as self-organizing maps
to identify patterns of permissions depending on
the application domain, and patterns of permission
grouping. Other empirical studies include Felt’s one
[14] on the effectiveness of the permission model, and
Roesner’s one [29] on how users react to permission-
based systems. While our paper also contains an
empirical part, it is also operational because we
devise an operational software engineering approach
to tame permission-based security models in general
and Android’s one in particular.

Enck et al [11] presented an approach to detect
dangerous permissions and malicious permission
groups. They devised a language to express rules
which are expressed by security experts. Rules that
do not hold at installation time indicate a potential
security problem hence a high attack surface. Our
goal is different: we don’t aim at identifying risks
identified from experts, but to identify the gap
between the application’s permission specification
and the actual usage of platform resources and
services. Contrary to [11], our approach is fully
automated and does not involve an expert in the
process.

PScout [3] is a static analysis designed concurrently
with our work. It also uses Soot but only relies on
CHA and does not use Spark. Our works compares
and validates part of their results in Section 6.2.

Finally, Felt et al. [13] concurrently worked on the
same topic as this paper. They published a very first
version of the map between developer’s resources
(e.g., API calls) and permissions. Interestingly, we

17

took two completely different approaches to iden-
tify the map: while they use testing, we use static
analysis. As a result, our work validates most of
their results although we found several discrepancies
that we discussed in details in Section 6.3. But the
key difference is that our approach is fully auto-
mated while theirs requires manually providing test-
ing “seeds” (such as input values). However, in the
presence of reflection, their approach works better
if the tests are appropriate. Hence, we consider that
both approaches are complementary, both at the con-
ceptual level for permission-based architectures, and
concretely for reverse-engineering and documenting
Android permissions.

Mustafa et al. [24] worked on the analysis of system
services. Their approach is to extract a sub call graph
using a context-sensitive backward slicing method
starting from permission check methods. Their analy-
sis is more precise since they capture conditions under
which permissions are checked. However, they only
consider independent system services and do not han-
dle RPC. We, on the other hand, start the analysis from
the Android API entry points and handle services
RPC links.

9 CONCLUSION

In this paper, we have empirically demonstrated that
off-the-shelf static analysis can not address the ex-
traction of permissions in Android. At least three
static analysis components must be put together in
order to use Class Hierarchy Analysis (CHA) and
field-sensitive static analysis (Spark) for analyzing
Android’s permissions. Those are (1) a string analysis,
(2) service identity inversion and (3) entry point and
service initialization for Spark.

We have compared our work with PScout [3] and
Felt [13]. We show that our approach confirms results
from concurrent work and that static analysis is com-
plementary to dynamic analysis.

Moreover, we have presented a generic approach
to reduce the attack surface of permission-based soft-
ware11 . We have extensively discussed the problem-
atic consequences of having more permissions than
necessary and showed that the problem can be mit-
igated using static analysis. The approach has been
fully implemented for Android, a permission-based
platform for mobile devices. For end-user applica-
tions, our evaluation revealed that 94/742 and 35/679
applications crawled from Android application stores
indeed suffer from permission gaps.

The security architecture of permission based soft-
ware in general and Android in particular is complex.
In this paper, we abstracted over several characteris-
tics of the platform such as low-level permissions. We
are now working on a modular approach that would

11. details at http://www.abartel.net/permissionmap/

be able to analyze native code and bytecode in con-
cert and to combine the permission information from
both. Furthermore, we are exploring how to express
permission enforcement as a cross cutting concern,
in order to automatically add or remove permission
enforcement points at the level of application or the
framework, according to a security specification.

REFERENCES

[1] The android developer’s guide, last-accessed: 2011-09. http:
//developer.android.com/guide/index.html.

[2] L. O. Andersen. Program analysis and specialization for the C
programming language. PhD thesis, University of Cophenhagen,
1994.

[3] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout:
analyzing the android permission specification. In Proceedings
of the 2012 ACM conference on Computer and communications
security, pages 217–228. ACM, 2012.

[4] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji.
A methodology for empirical analysis of permission-based
security models and its application to android. In ACM Con-
ference on Computer and Communications Security (CCS 2010),
pages 73–84, Chicago, Illinois, USA, October 4-8, 2010.

[5] A. Bartel, J. Klein, M. Monperrus, and Y. L. Traon. Auto-
matically securing permission-based software by reducing the
attack surface: An application to android. In Proceedings of the
27th IEEE/ACM International Conference On Automated Software
Engineering, 2012.

[6] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi.
Xmandroid: A new android evolution to mitigate privilege
escalation attacks. Technical Report TR-2011-04, Technische
Universität Darmstadt, Apr 2011.

[7] P. Centonze, G. Naumovich, S. J. Fink, and M. Pistoia. Role-
based access control consistency validation. In ISSTA 2006,
pages 121–132.

[8] M. Conti, V. T. N. Nguyen, and B. Crispo. Crepe: context-
related policy enforcement for android. In Proceedings of the
13th International Conference on Information security, 2011.

[9] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy.
Privilege escalation attacks on android. In Information Security,
pages 346–360. Springer, 2011.

[10] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach.
Quire: Lightweight provenance for smart phone operating
systems. In 20th USENIX Security Symposium, Aug. 2011.

[11] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile
phone application certification. In Proceedings of the 16th ACM
CCS, pages 235–245, New York, NY, USA, 2009.

[12] W. Enck, M. Ongtang, and P. McDaniel. Understanding
android security. IEEE Security and Privacy, 2009.

[13] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In ACM CCS 2011.

[14] A. P. Felt, K. Greenwood, and D. Wagner. The effectiveness
of application permissions. In Proceedings of the 2nd USENIX
conference on Web application development, WebApps’11, pages
7–7, Berkeley, CA, USA, 2011. USENIX Association.

[15] A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, and E. Chin.
Permission re-delegation: Attacks and defenses. In Proceedings
of the 20th USENIX Security Symposium, 2011.

[16] E. Geay, M. Pistoia, T. Tateishi, B. G. Ryder, and J. Dolby.
Modular string-sensitive permission analysis with demand-
driven precision. In ICSE, pages 177–187. IEEE, 2009.

[17] C. Gibler, J. Crussel, J. Erickson, and H. Chen. Androidleaks
detecting privacy leaks in android applications. Technical
report, UC Davis, 2011.

[18] S. Hoffman. Zeus banking trojan variant attacks android
smartphones. CRN, 2011. http://goo.gl/xAEGr.

[19] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights
analysis for Java. ACM SIGPLAN Notices, 37(11):359–372, Nov.
2002.

[20] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot
framework for Java program analysis: a retrospective. In Cetus
Users and Compiler Infastructure Workshop (CETUS 2011), Oct.
2011.

http://www.abartel.net/permissionmap/
http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html
http://goo.gl/xAEGr

18

[21] O. Lhoták and L. Hendren. Scaling Java points-to analysis
using Spark. In 12th International Conference on Compiler
Construction, 2003.

[22] P. Manadhata and J. Wing. An attack surface metric. IEEE
Transactions on Software Engineering, 37(3):371 –386, may-june
2011.

[23] C. Marforio, A. Francillon, and S. Čapkun. Application
collusion attack on the permission-based security model and
its implications for modern smartphone systems. Technical
Report 724, ETH Zurich, April 2011.

[24] T. Mustafa and K. Sohr. Understanding the implemented
access control policy of android system services with slicing
and extended static checking. Technical report, University of
Bremen, 2012.

[25] M. Nauman, S. Khan, and X. Zhang. Apex: extending android
permission model and enforcement with user-defined runtime
constraints. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, 2010.

[26] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Se-
mantically rich application-centric security in android. Journal
of Security and Communication Networks, 2011.

[27] M. Pistoia, S. J. Fink, R. J. Flynn, and E. Yahav. When role
models have flaws: Static validation of enterprise security
policies. In ICSE, 2007.

[28] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. Inter-
procedural analysis for privileged code placement and tainted
variable detection. In ECOOP, 2005.

[29] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan. User-driven access control: Rethinking permission
granting in modern operating systems. Technical Report MSR-
TR-2011-91, Microsoft Research, 2011.

[30] J. H. Saltzer and M. D. Schroeder. The protection of informa-
tion in computer systems. In Proceedings of the IEEE, 1975.

[31] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, and S. Dolev.
Google android: A state-of-the-art review of security mecha-
nisms. CoRR, abs/0912.5101, 2009.

[32] R. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal of Computing, 1(2):146 – 160, 1972.

10 ACKNOWLEDGMENTS
This research is supported by the National Research
Fund, Luxembourg (AFR grant 1081630). We also
would like to thank Eric Bodden for his help in using
the Soot analysis toolkit.

Alexandre Bartel Alexandre Bartel is a PhD
candidate in Software Engineering at the
University of Luxembourg at the Interdisci-
plinary Center for Security Reliability and
Trust (SnT) / Serval Team. He received a
M.S. degree in Computer Engineering from
INPG-Esisar, France in 2010 and a M.S. from
KTH, Sweden in 2010. His current research
focuses on analyzing permission-based soft-
ware and bytecode monitoring for in-vivo
smartphone security.

Jacques Klein Jacques Klein is research
scientist at the University of Luxembourg
and at the Interdisciplinary Centre for Se-
curity, Reliability and Trust (SnT). He re-
ceived a Ph.D. degree in Computer Sci-
ence from the University of Rennes, France
in 2006. His main areas of expertise are:
Software Security by applying software engi-
neering to security; Model-Driven Engineer-
ing, with a focus on model composition and
model@runtime; Software Testing, and Soft-

ware Product Lines.

Martin Monperrus Martin Monperrus has
been an associate professor at the University
of Lille since 2011. He was previously with
the Darmstadt University of Technology as a
research associate. He received a Ph.D. from
the University of Rennes in 2008 and a Mas-
ter’s degree from the Compiègne University
of Technology in 2004.

Yves Le Traon Yves Le Traon is professor at
the University of Luxembourg, in the domain
of software engineering, reliability, testing
and security. His current research interests
include and combine Software Product Line
re-engineering and testing, Android secu-
rity, mutation testing, model-driven security,
and SBSE. He received a Ph.D. degree in
Computer Science at the “Institut National
Polytechnique” in Grenoble, France, in 1997.
He was associate professor in France at the

University of Rennes, and then full professor at Telecom Bretagne
until he reaches Luxembourg in 2009. He is currently the head of
the CSC Research Unit (Department of Computer Science) and an
active member of the Interdisciplinary Centre for Security, Reliability
and Trust (SnT), where he leads the SERVAL group (SEcuRity
design and VALidation). He has been on the program, steering,
or organization committees of many international IEEE software
engineering conferences. He also belongs to the steering committee
of IEEE ICST. He is a member of the IEEE Computer Society.

	Introduction
	The Permission Gap Problem
	Possible Consequence of a Permission Gap
	Declaration and Usage of Permissions ``camera'' and ``record audio''

	Definitions
	Overview of Android
	Software Stack
	Android Permissions
	Services and Permissions
	Technical Details on Android
	Android Boot Process
	Android Communication

	Static Analyses for Android
	Common Components for CHA and Spark
	String Analysis for Extracting Permissions from Permission Enforcement Points
	Service Redirection: Handling Binder-based Communication
	Service Identity Inversion
	Entry Points Handling for CHA

	CHA-Android
	Call Graph Search Optimization
	Empirical Results

	Spark-Android
	Naive Usage of Spark
	Spark Specific Analysis Components
	Empirical Results

	Recapitulation

	Discussion
	CHA versus Spark
	Comparison with PScout
	Comparison with Felt et al.
	Soundness
	The Impact of Service Identity Inversion
	Limitations
	Native Code
	Reflection in the Framework
	Dynamic Class Loading
	Spark

	Computing Permission Gaps
	A Calculus for Permission Analysis
	Extraction of M and AV
	Computing the Permission Gap

	Related Work
	On the Java Permission Model
	On the Android Permission Model

	Conclusion
	References
	Acknowledgments
	Biographies
	Alexandre Bartel
	Jacques Klein
	Martin Monperrus
	Yves Le Traon

