Automatically Exploiting Potential Component
Leaks in Android Applications

Li Li, Alexandre Bartel, Jacques Klein, Yves le Traon
University of Luxembourg - SnT, Luxembourg
{1i.1li, alexandre.bartel, jacques.klein, yves.letraon} @uni.lu

Abstract—We present PCLeaks, a tool based on inter-
component communication (ICC) vulnerabilities to perform data-
flow analysis on Android applications to find potential component
leaks that could potentially be exploited by other components. To
evaluate our approach, we run PCLeaks on 2000 apps randomly
selected from the Google Play store. PCLeaks reports 986
potential component leaks in 185 apps. For each leak reported by
PCLeaks, PCLeaksValidator automatically generates an Android
app which tries to exploit the leak. By manually running a subset
of the generated apps, we find that 75% of the reported leaks
are exploitable leaks.

I. INTRODUCTION

The number of Android apps has increased exponentially
in recent years. As of May 2012, Android became the most
popular mobile operating system, running on the largest set
of activated devices, and being the market leader in most
countries [1]. Currently, more than 1.17 millions of apps
exist in Google play and more than 80% of the apps are
free of charge [2]. Not surprisingly, Android phone users are
increasingly relying on the apps to manage their personal data.
Because of that, the number of malware is also increasing.
Kaspersky [3] has reported in its 2013 security bulletin that
there are more than 148,427 mobile malware variants in 777
families and that 98.05% of the found mobile malware target
the Android platform. As reported by Securelist [4], nearly half
of the found Android malware are Trojan (e.g., SMS-Trojan)
that steal personal data stored on the user’s smartphone.

Some families of malware focus on private data leaks. The
more private data they want to leak, the more permissions
they have to declare. An application asking for numerous per-
missions or for permissions the application should not require
may alert the user [5, 6]. For instance, a note book application
asking for permission to send SMS looks suspicious. Instead
of drawing the attention of the user by asking for permissions,
malware may exploit vulnerabilities existing in other apps
to leak sensitive data. Thus, it is essential to detect those
vulnerable apps and thereby keep them from entering the app
stores.

State-of-the-art approaches are focusing on either exploit-
ing ICC vulnerabilities or detecting full private data leaks. For
example, Epicc [7] is designed to detect ICC vulnerabilities
(e.g., Activity Hijacking). But it does not perform data-flow
analysis based on the detected ICC vulnerabilities. In other
words, Epicc only knows where component may leak some-
thing, but it does not know if any data is flowing through the
leak which yields many false positives. For private data leaks
detection, AndroidLeaks [8], for example, uses static analysis
technique to automatically find sensitive data leaks in Android

apps on a massive scale. Another tool named IccTA [9], which
performs inter-component (and also inter-app) communication
based taint analysis to detect privacy leaks in Android apps.
However, those tools are mainly focusing on private data leaks.
To sum up, none of these tools tackle potential component
leaks.

The only existing tool analyzing potential component leaks
is ContentScope [10]. However, it only focuses on Content
Providers, one of the four component types of an Android
application. In this paper we present PCLeaks which finds
potential component leaks on the other three components:
Activity, Service and Broadcast Receiver. Note that when we
talk about potential component leaks, each leak is always
within a single component. It is not necessary to exploit inter-
component potential leaks since such leaks are covered by
intra-component potential leaks. Thus, we only perform intra-
component data-flow analysis in this paper.

PCLeaks uses a static taint analysis technique to detect
potential component leaks. A “traditional” leak starts with a
source, a statement retrieving sensitive data from the system,
and ends with a sink, a statement sending data outside of
the application. In this paper, we focus on two types of
“potential” leaks. The first type, Potential Passive Component
Leak (PPCL), starts at an Android component entry-point
and ends at a sink. For this leak, the component passively
leaks data that it receives from other components. The second
type, Potential Active Component Leak (PACL), starts at a
source and ends at a component exit-point. For this leak, the
component actively sends sensitive data to other components,
which may leak the sensitive data intentionally or carelessly.

An example of the two types of component leaks is shown
in Figure 1. The single component contains two sources, two
sinks, two entry-points and two exit-points. There are four
data-flow paths, marked as (A), (B), (C) and (D). Path (A)
represents a private data leak. Those kind of leaks are well
studied by tools such as Flowdroid [11], ScanDal [12] or
DroidChecker [13]. Path (D) transfers data from an entry-point
to an exit-point, it does not contain any real source or sink.
Path (B) is a potential passive component leak (PPCL), starting
at an entry-point and ending at a sink. Path (C) represents a
potential active component leak (PACL), starting at a source
and ending at an exit-point. In this paper we focus on detecting
paths similar to (B) and (C), that is, potential component leaks.
Roughly speaking, the fact that a leak of a component is
exploited or not is dependent on another component.

Our approach relies on the Control Flow Graph (CFG) of
the analyzed apps. If a sink node is reached from a entry-
point node, a PPCL is detected. If a exit-point node is reached
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Fig. 1: An example of Potential Component leaks, where (B)
is a potential passive component leak (PPCL) and (C) is a
potential active component leak (PACL).

from a real source node, a PACL is detected. The precision
of our approach depends on the precision of the generated
CFG. The event-driven nature of the Android system causes
discontinuities in the CFG that PCLeaks models by generating
a dummy main method for those discontinuities [14]. Then,
it performs a data-flow analysis on the precise CFG and
finally outputs the detected potential component leaks. We
also present a tool called PCLeaksValidator to automatically
generate apps to validate leaks reported by PCLeaks. The
purpose of the generated apps is to check whether leaks are
true positives (e.g., really send sensitive data outside of the
app) or not.

The contribution of this paper are as follows:

e  PCLeaks, a static taint analysis tool to detect potential
component leaks (PACLs and PPCLs).

e PCLeaksValidator, a tool to automatically generate
applications to validate leaks reported by PCLeaks.

e An empirical experiment to evaluate PCLeaks and
PCLeaksValidator over 2000 real-world Android ap-
plications.

The paper continues as follows. Section II explains the
necessary background on Android security. Section III gives a
motivating example and Section IV introduces the details of
potential component leaks. In Section V, the paper discusses
the implementation details of our approach. Section VI eval-
uates our approach. Limitations are discussed in Section VII.
Section VIII presents the related work and Section IX con-
cludes the paper.

II. BACKGROUND
A. Android Components

Components are the essential building blocks of an Android
apps. As most components can be shared among applications,
they act as entry points to the application. Four different types
of components exist in Android. The fist one is Activity,
which represents a screen with a user interface. The sec-
ond one is Service, which is used to run long-time jobs
in the background of the app. The third one is Content
Provider, which provides a standard interface for other
components to manage a shared set of data. The last one
is Broadcast Receiver, which responds to system-wide
broadcast announcements. Of these four types of components,
only Activity provides a user interface.

An abstract object called Intent is used to commu-
nicate between two components. It describes an action to
be performed (e.g., launching an Activity) and the data
(extras) transferred by the action. There are two kinds of
intents in Android: explicit intents and implicit intents. Explicit
Intents, specify the target component. Implicit Intents,
do not specify the target component, but instead, they hold
enough other information (e.g., action, category and data) for
the system to determine an available component to run.

An app must declare all its components in a configuration
file named AndroidManifest.xml . Implicit Intents
can only reach components that declare one or more intent
filters. A component not declaring any intent filters can still
receive explicit Intents which normally come from the
same app. However, it is still possible to receive explicit
Intents coming from other apps. The only limitation is
that those apps need to be signed by same signature. Intent
filters are used to declare the capabilities of components (e.g.,
what types of broadcasts a receiver can handle). An example
about declaring a component with its intent filter is shown in
Listing 1. A service called SendSMSService is declared by
element service. An intent filter is declared by element intent-
filter. Under intent-filter, an action, a category and a data are
declared by element action, category and data respectively.
SendSMSService can receive ? all the implicit Intents
which hold the same values of action, category and data as the
ones declared by the intent-filter (e.g., action equals to “ac-
tion.SEND_SMS”, category equals to ’category.SEND_SMS”
and mime type equals to “text/plain”).

l|<service android:name="SendSMSService">

2| <intent-filter>

3 <action android:name="action.SEND_SMS" />

4 <category android:name="category.SEND_SMS" />

5 <data android:mimeType="text/plain"/>

6| </intent-filter>

7|</service>
Listing 1: An example about declaring a component with
its intent filter.

B. Android Event-Driven Nature

Android apps are written in Java and thereby share the
event-driven nature of Java. The event-driven nature introduces
disconnections between parts of the code. In particular, the
callback mechanism introduced in Java is used to implement
the event-driven nature. For a concrete example, taking into
account the java.lang.Thread class. It is used to imple-
ment native thread and execute long-time jobs. A developer
can extend this class and override the run method, and then
call the start method to send a launching thread event to
the system. Then, the system will select an appropriate time to
launch the thread by executing the run method. There is no
code connection between start and run. When performing
a static analysis this has to be modeled.

Similarly, the Android system introduces specific callback
methods, called lifecycle methods. Each Android component

Note that for Broadcast Receivers, it is also available to program-
matically register them.

2For more information about intent resolution refer to the official
documentation available at http://developer.android.com/guide/components/
intents-filters.html#Resolution


http://developer.android.com/guide/components/intents-filters.html#Resolution
http://developer.android.com/guide/components/intents-filters.html#Resolution

void main(String[] args) { . X
int x = 10; Smain !ﬁ~ Soutput
output(x); |
) v
void output(int x) { i
System.out.printin(x); x=10 h printin(x)
} !
v
— normal re--Y__ 7
:oumuun ! e out
- - call-to-return-site vocal outpu
[P
—.p call-to-start ;
Fm-=L-- A
! output(x) ! e .
----p exit-to-return-site | return-site 1 main
L 1

Fig. 2: An example about CFG and its codes.

has its own internal state. The Android system switches
between states of a component by calling specific lifecycle
methods of the component. Lifecycle methods are executed
by the Android system according to user or system events. For
example, when a user navigates back to an existing activity,
the onRestart method is called. The problem is that there
is no direct code connection between lifecycle methods. Thus,
it is essential to model the Android’s event-driven nature to
precisely analyze Android apps.

C. Control-Flow Graph (CFG) and Taint Analysis for Android

To simplify our analysis process and to better describe our
approach, we use CFG which are introduced by Reps et al. [15]
to intermediately and visually represent the relationships of
the app codes. The CFG is made up of a collection of intra-
precedure control-flow graph (IPCFG) and the IPCFGs are
connected through the call relations in the CFG. In an IPCFG,
Sname and e,qme are used to specify the start node and the
end node respectively. For a procedure call, two nodes (call
and return-site) and three edges (call-to-return-site, call-to-
start and exit-to-return-site) are used to represent them.

An example about CFG and its codes is shown in Fig-
ure 2. For procedure output (x), two nodes (call and
return-site) are used to represent it. Three edges are
also involved for procedure output (x). The first edge is
call-to-return-site from node call to node return-site
in procedure output (x). The second edge is call-to-start
form node call to node s,ytpu: and the last edge is exit-fo-
return-site from node e,y¢pus to node return-site.

In recent years, many tools to generate call-graphs for
Android applications and perform taint-analysis have been
developed by researchers such as CHEX [16], TrustDroid [17]
or LeakMiner [18]. However, few of them are available online.
In this paper we use FlowDroid [11] , a highly precise tool for
data-flow analysis on Android applications. FlowDroid models
the lifecycle of Android components and performs a context,
flow, field and object-sensitive taint analysis.

III. MOTIVATING EXAMPLE

We start by giving a motivating example shown in
Listing 2 and Listing 3. Two Android apps, namely

3FlowDroid is open-source and can be downloaded at https://github.com/
secure-software-engineering/soot-infoflow-android

Applicationl and Application2, are introduced.
Applicationl, an example of PPCL, contains a Service
named SendSMSService in which a content of short mes-
sage is obtained from the received Intent when the Service
is launched. Then, the content of the message is sent outside
of the app by SMS. Application2, an example of PACL,
contains an Activity named GetDeviceIdActivity in
which a device id is obtained when the Button b is clicked.
Then, the device id is stored in an Intent and is sent to other
components by method startService ().

1|//Applicationl

2|class SendSMSService extends Service{

int onStartCommand (Intent i,int f,int id) {
String sms = i.getStringExtra("sms-content");
SmsManager sm = SmsManager.getDefault ();
sm.sendTextMessage (num, null, sms,null, null);
return super.onStartCommand (i, £, id);

~N O\ W

81}

Listing 2: A motivating example about potential passive
component leak.

1|//Application?

2|class GetDeviceIdActivity extends Activity{

3] wvoid onStart (Bundle state) {

4 Button btn = new Button|();

5 btn.setOnClickListener (new OnClickListener () {
6 void onClick (View v) {

7 TelephonyManager tm = default;

8 String id = tm.getDeviceId();

9 Intent i = new Intent();

10 i.setAction ("ACTION_SENDTO"); // send email
11 i.setType ("text/plain");

12 i.putExtra("mail-body", id);

13 GetDeviceIdActivity.this.startService (i);
14111}

Listing 3: A motivating example about potential active
component leak.

In Listing 2, getStringExtra () (line 4) is a entry-
point since it retrieves data from an Intent sending
from other components. sendTextMessage () (line 6)
is a sink since it sends data outside of the app. From
getStringExtra () to sendTextMessage () (line 4-6),
SendSMSService will passively receive data and send them
outside of the app by short message. We call this behavior as
potential passive component leak (PPCL). Malicious app may
use this leak to send sensitive data outside of the device. Since
the malicious app itself does not contain any sink (or unnec-
essary permissions), it will bypass the private data detection
tool like FlowDroid and consequently enter the Android apps
market unnoticed.

Listing 3, getDeviceId () (line 8) is a source since
it obtains the unique device id (e.g., the IMEI for GSM
and the MEID or ESN for CSMA phones) from the system.
startService () (line 13) is a exit-point since it send data
stored in an Intent to other components. There is a data-
flow path from getDeviceId() to startService ()
in Application2 (line 8-13). GetDeviceIdActivity
actively leaks the device id to other components. We call this
behavior as potential active component leak (PACL).

This motivating example illustrates that a few lines of code
are enough to create potential leaks that can be exploited by
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malicious applications. The next Section describes the different
kinds of potential leaks that we detect in this paper.

IV. POTENTIAL COMPONENT LEAKS

In this section, we detail the classification of potential com-
ponent leaks. As already said, Potential Passive Component
Leak (PPCL) starts at an Android component entry-point and
ends at a sink. Potential Active Component Leak (PACL), starts
at a source and ends at a component exit-point. Moreover, this
paper focuses on three types of Android components: Activity,
Service, and Broadcast Receiver. As a result, since PPCL and
PACL can occur in each of these component types, we define
six (3 x 2) different kinds of potential leaks. Figure 3 illustrates
these six kinds of potential leaks.
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Fig. 3: Classification of potential component leaks.

A. PPCL

Figure 3a shows the three kinds of PPCL, that can be
triggered by Intent spoofing: Activity Launch Leak, Service
Launch Leak and Broadcast Injection Leak.

Activity Launch Leak. Exported Activities can be
launched by other components (or applications) with either
explicit or implicit Intents. In some case, an Activity may be
launched with an Intent and then leaks the Intent’s data outside
the activity or application. This can be used by malicious
apps to passively leak sensitive data. We call this specific leak
Activity launch leak.

Service Launch Leak. As for an exported activity, ex-
ported services can also be launched by other components
or applications. If the service leaks the received Intent’s data
outside the service or application, the leak is called a Service
launch leak. For example, Applicationl in Listing 2
contains a Service launch leak.

Broadcast Injection Leak. A Broadcast Receiver may leak
the data it receives from other components or applications. A
malicious app can use this to make the Broadcast Receiver
passively leak sensitive data. We call this specific leak a
Broadcast injection leak.

B. PACL

Figure 3b shows the three kinds of PACL, that may be
triggered by Intent hijacking: Activity Hijacking Leak, Service
Hijacking Leak and Broadcast Theft Leak.

Activity Hijacking Leak. A malicious Activity can be
launched through an Intent hijacking. If the original component
reads sensitive data and stores them into an Intent (e.g., extras).
The malicious Activity may hijacking the Intent and thereby
manipulates the sensitive data. Therefore, when sensitive data

is obtained and is sent to other Activities through inter-
component communication (e.g., startActivity), we call
it Activity hijacking leak.

Service Hijacking Leak. A malicious Service may hijack-
ing an Intent, which contains sensitive data in its Extras. In
this situation, we call the original component contains Service
Hijacking leak. For example, a Service hijacking leak exists
in Application?2 of Listing 3.

Broadcast Theft Leak. We call a component that contains
Broadcast Theft Leak as it reads sensitive data and sends them
through an Intent to a Broadcast Receiver. Because the Intent
can be stolen by a malicious Broadcast Receiver.

To summaries, We define six kind of potential leaks (two
categories: PPCL and PACL) in this paper. The reason why
we distinguish the different component types in each category
is that different semantics are performed by Android system
when multiple receivable components exist. In detail, for mul-
tiple launchable Activities, the system will pop up a selection
box to let user decide which Activity is going to be launched.
The Android system will randomly select a Service to launch
for multiple launchable Services. The Android system launches
all available Broadcast Receivers for multiple launch-

able Broadcast Receivers *.

V. IMPLEMENTATION

In this section we discuss the implementation of our
approach to find and validate potential component leaks. Our
approach strongly relies on the FlowDroid tool and features
four steps as illustrated Figure 4. The first three steps describe
PCLeaks. In Stepl (Section V-A), PCLeaks extracts the list
of reachable Android components. In Step2 (Section V-B),
PCLeaks builds a precise CFG with the information provided
by Stepl. In Step3 (Section V-C), PCLeaks uses the source and
sink methods collection computed by SuSi [19] to perform
taint analysis on the precise CFG provided by Step2 and
then reports a list of potential leaks it found. In the last
step (Section V-D), we use PCLeaksValidator to automatically
generate applications to validate leaks reported by PCLeaks.
Finally, for each leak reported by PCLeaks we manually run
the app, which is generated by PCLeaksValidator to check
whether PCLeaks reported a real leak or not.

A. Step 1: Preprocessing

In the first step (Step 1: apktool in Figure 4), PCLeaks
extracts the Android XML file using apktool’. Based on the
generated XML file, PCLeaks extracts the following artifacts:
(1) The list of declared components;

(2) The permission attribute of components.
(3) The exported attribute of components.

Computing (1) gives the list of components of an applica-
tion. If a component is exported it means it can be reachable
from other applications. If it is not exported, it cannot receive
Intents from other apps. In other words, PCLeaks does not

4This is not always the case for ordered broadcasts, where the available
Broadcast Receivers are executed one by one. As each receiver exe-
cutes in turn, it can abort the broadcast so that it won’t be passed to other
receivers.

Shttps://code.google.com/p/android-apktool/
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Fig. 4: The processes of our approach (Step1-3 for PCLeaks, Step4 for PCLeaksValidator). * means that we do some improvements
for FlowDroid in that step. For example, we feature FlowDroid to generate a precise CFG through the components list in step2
and we leverage FlowDroid to better identify sink methods in step3.

analyze non-exported component. We use the algorithm listed
in Alogrithm 1 to check whether a component is exported or
not. First, we check whether the attribute exported is explicitly
set in the manifest or not. If it is set explicitly, we directly
return the value of the attribute (true or false). If it is not set ex-
plicitly, we need to analyze the default value of the component
which is related to the component’s type. If the component’s
type is ContentProvider and its app’s version is less
than or equal to 16, then the component is exported by
default. If the component’s type is not ContentProvider
and it contains an intent-filter element, then the component is
exported. Otherwise, the component is not exported.

But are all those exported components always accessible
from another application? Only components not protected
by a permission are reachable. Computing (2)° gives the
list of permission protected components. If a component is
protected by a permission, an app trying to communicate with
it must declare the same permission. Note that this only works
for permissions with protection level normal or dangerous.
Since four protection levels (normal, dangerous, signature
and signatureOrSystem) exist for permissions in Android,
if a component is protected by permissions at signature or
signatureOrSystem level, it is impossible for a malicious app
to access the components because the malicious apps would
need to be signed with the same signature of they accessed

app .

We performed a short study of permission protected com-
ponents on 2000 Android apps which have 11,584 components
in total. Among these components, only 13 are protected by
a permission and 3 out of the 13 permissions are protected
by signature level. The rest 10 permissions are protected
by normal level. Since the number of protected components
is negligible, we do not take permissions into consideration
for the results in this paper and only include exported and
non-permission protected components in the list of reachable
components.

B. Step 2: Precise CFG Building with FlowDroid

As mentioned in Section II-B, due to the Android event-
driven nature, CFG of apps are imprecise. The imprecision is

SReferring to the second item presented above.
"This would be possible if the private key of the developer of the benign
app is leaked.

Algorithm 1 Checking the exported status of a component

1: procedure ISEXPORTED(comp, version)

2 if true == isExportedAttr Declared(comp) then
3 return get AttrValue(comp, “exported”)

4 end if

5: if type(comp) == ContentProvider then

6: if version <= 16 then

7 return true

8 else

9: return false

10: end if

11: end if

12: if true == isIntentFilter Declared(comp) then
13: return true

14: end if

15: return false

16: end procedure

mainly caused by two kinds of methods: lifecycle methods and
callback methods. We use FlowDroid [11] to model lifecyle
and callback methods of Android components. We modified
FlowDroid to only take into account reachable components ex-
tracted at step1 to build the precise CFG. Since we experienced
that FlowDroid cannot properly analyze some apps because of
the memory limitation, the precise CFG does improved the
efficiency of FlowDroid.

For lifecycle methods, because the call sequence is well-
defined in the Android’s documents, what is needed is to
simulate the sequence to call all the lifecycle methods. Since
a component has different states in its life time, when leaving
a state, it may have different choices and thereby executing
different lifecycle methods. Let us take an Activity as
a concrete example. When another Activity comes into
the foreground (onPause () will be executed) two lifecycle
methods may be selected by the Android system depend-
ing on user events. If the user returns to the activity, the
onResume () is executed. If the Activity is no longer
visible, onStop () is executed. FlowDroid generates a graph
where both methods are reachable.

For callback methods, FlowDroid has a collection of call-
back methods extracted by analyzing the Android documenta-
tion. Then, for each component, FlowDroid checks whether it
contains callback methods or not. If a callback methods exists
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in a component, FlowDroid makes the component reachable
in the application graph.

To model the application graph, FlowDroid generates a
dummy main method to call all the involved components
and their lifecycle and callback methods. The CFG of gen-
erated dummy main method for GetDeviceIdActivity
illustrated in Listing 3 is shown in Figure 5. The lifecycle
methods are connected from onCreate () to onStart ()
(shown in A) and the callback methods are also connected
from onStart () to onClick () (shown in B). Method
onClick () is only called after method onResume ()
which simulates an Activity going to the running
state. Because onResume () is not explicitly overridden in
GetDeviceIdActivity, we do not model it in the gener-
ated dummy main method.

C. Step 3: Taint Analysis

Taint analysis is a kind of data-flow analysis. In this work,
we leverage FlowDroid which is based on Heros [20], a
IFDS/IDE problem solver, to perform a inter-procedural data-
flow analysis for Android apps and Dexpler [21], a feature
of Soot, to convert Android Dalvik bytecode to Soot’s Jimple
code for static Android application analysis.

The collection of source and sink methods used in this
work is generated by SuSi [19]. SuSi is an open source tool
that automatically identifies the source and sink methods in
Android applications.

Because in this paper we focus on detecting potential
component leaks, we also add all the entry-points and exit-
points of components as source methods and sink methods re-
spectively. The original FlowDroid is only sensitive to the sinks
exactly defined in its configuration document. The problem is
that FlowDroid will ignore all the override methods of the
defined sinks. For example, if an sink startActivity ()
of class Activity is defined and startActivity () (or
this.startActivity ()) is called in the body of class

i = new Intent i.putExtra
i.setAction > i.setType

GetDeviceIdActivity illustrated in Listing 3.

CustomActivity which extends from class Activity,
FlowDroid will not take into account startActivity ()
in CustomActivity as a sink even it should be. We
corrected FlowDroid’s strategy of identifying sink methods so
that FlowDroid is sensitive to all the override sink methods as
well.

From the leaks detected by FlowDroid, we filter all the
non-potential component leaking paths if it does not starts
with a component entry-point method or if it does not ends
with a component exit-point method. If a potential component
path starts with a component entry-point method, it means a
PPCL is detected. If a potential component path ends with a
component exit-point method, it means a PACL is detected.

D. Step 4: Validation

In order to validate the reported potential leaks, we devel-
oped a prototype tool called PCLeaks Validator, which automat-
ically generates Android apps to check the validity of reported
potential leaks. For a PPCL, the generated app contains only
one component (Activity), which appropriately prepares an
Intent and uses it to launch the target component. The extra
data of the generated app always uses the default value we
defined no matter what key of the extra is. For a PACL, the
generated app contains also only one component, where the
type depends on the exit-point of the PACL.

l|class Servicel extends Service{

2| int onStartCommand(Intent i,int f,int id) {

3 String mail = i.getStringExtra("mail-body");

4 Log.1i("PCLeaksValidator", mail);

5 return;

6|1}
Listing 4: The code generated by PCLeaksValidator for
Listing 3.

Take Listing 3 as a concrete example. The code generated
by PCLeaksValidator is shown in Listing 4, in which the Intent-
Filter of Servicel is also appropriately configured so that



it can be launched by Application 2. Note that for PACLs,
PCLeaksValidator uses method Log.i as sink method
for all the generated apps.

We manually run the two apps (one is the analyzed app
and the other is generated by PCLeaksValidator) to validate
the exploited component leak. Currently, we are not able
to automatically run the two apps to validate the results.
Because it needs us to automatically trigger the communi-
cation event between the tested two apps. As introduced by
David et al. [22], simulating user interaction is currently a
main challenge for dynamic application analysis. In addition,
some communication events rely on the user inputs at run
time and thereby make them becomes harder to be automat-
ically triggered. As future work, we would like to enhance
PCLeaksValidator to automatically validate the two apps.

VI. EVALUATION

In Section VI-A, we present our experimental results of
running PCLeaks on a set of 2000 real-world applications.
Then, we detail two case studies (one for PPCL and the other
for PACL) in Section VI-B and Section VI-C respectively.

A. Experimental Results

We run PCLeaks on 2000 apps randomly selected from
the Google play store. The computer used for the experiment
has a Core i7 CPU. We give 8 Gb for the Java VM heap.
The apps are different from the collection we use to perform
a short study about the permission protection of components.
In average, PCLeaks processes an app in about 40 seconds.

We experienced that FlowDroid cannot properly analyze
some apps (too much memory consumption or hangs). As
PCLeaks is strongly dependent on FlowDroid, it shares the
same problem. So we start by analyzing 2453 apps and keep
only 2000 apps that work with FlowDroid. Among the 2453
apps, 453 of them could not be processed (e.g., due to errors of
insufficient memory, Type mask not found for type or Manifest
contains more than one manifest node). Thus, in this paper,
we show our experimental results for 2000 apps.

Potential component leaks detected by PCLeaks are shown
in Table I. PCLeaks reports 143 PACLs among 43 apps, which
is shown in row 1, where only implicit Intents are taken
into consideration. There is a significant difference between
explicit and implicit Intents for PACL results. PCLeaks re-
ports 15,260 leaks among 1149 apps, where 14,286 leaks are
Activity Hijacking Leaks. These results match our expectation
that Android apps are using ICC mechanism to transfer data
between components, and the most used ICC method is
startActivity [9]. The good news is that nearly 99%
of detected PACLs are using explicit Intents, which is very
difficult to be used by malicious apps to leak the sensitive
data. That is why in this paper we do not take into account
explicit Intents as PACLs when validating leaks.

For PPCLs, PCLeaks reports 843 leaks among 147 apps,
which is shown in row 3, where non-exported and permission
protected components are excluded. Taking into account the
permission attribute of components has little impact on the
results: only 5 out of 848 leaks are protected by permission.
That means most of the developers are not accustomed to

TABLE I: The experimental results of detected potential com-
ponent leaks.

Leaking Type #. of Leaks  #. of Apps
PACLs (without explicit Intent)* 143 43
PACLs (with explicit Intent) 15260 1149
PPCLs (without permission, without non-exported)™ 843 147
PPCLs (with permission, without non-exported) 848 150
PPCLs (with permission, with non-exported) 5540 514

* We take these two rows as potential component leaks result, the other rows
are used to demonstrate the influence of explicit/implicit Intent, permission
and export attributes to the results.

use permission to protect their exported components. This
also confirms our permission related short study described
in Section V-A where only 13 out of 11,584 components
are protected by permission. If we count the non-exported
components for PPCLs, the number of detected results are
almost six times the number of results excluding the non-
exported components. This is good news, as it shows that
most of the components are non-exported, which avoids the
components to be attacked via Intent spoofing.

We randomly select 20 leaks (10 for PACLs and 10
for PPCLs) and run PCLeaksValidator on them. Then, we
manually run the generated apps with their related source apps
to check the detected leaks. We confirm that 7 PACLs and 8§
PPCLs are true positives. The false positives are introduced
by the condition-insensitivity of PCLeaks, insufficient string
analysis of PCLeaksValidator or bugs in specific case. For
example, a false positive is caused by a leak containing an
unfeasible condition in its path. Since PCLeaks is currently
condition-insensitive, it over-approximates all the possible
paths whenever condition statements exist. Another confirmed
false positive comes from insufficient string analysis. Since
PCLeaksValidator performs a simple string analysis that only
traverses the single intra-procedural control-flow graph to
determine the value of a string variable. If the value of strings
are not determined, we simply ignore them currently. This
makes PCLeaksValidator yield false alarms (e.g., the key of
an extra data is missing). In the future work, we would like
to perform precise string analysis [23] to obtain better results.

Figure 6 classifies the detected PACLs and PPCLs accord-
ing to the types of leak. The highest number of detected po-
tential component leaks are Activity Launch Leaks. PCLeaks
reports 534 leaks on Activity Launch Leaks. Indeed, it is easy
to launch an Activity since all the Activity’s information are
defined in AndroidManifest.xml. In PACLs, the highest
number of detected leaks are Activity Hijacking Leaks, where
110 leaks are reported. Since Activity is well-used in Android,
the number of Activity Hijacking Leaks and Activity Launch
Leaks confirm our expectation that the leaks related Activity
should be the highest detected leaks.

The number of Broadcast related leaks (including system
broadcasts) is higher than Service related leaks. This matches
the design philosophy of Android components. On the one
side, Broadcast is designed to communicate with other apps.
It should have more potential leaks. On the other side, some
apps (e.g., In-app payments®) are designed to provide
functional services. But instead of exporting the Service com-
ponent, those apps export a Broadcast for other apps and in

8Package name is com.beenverified.android.tests.in_app
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3

E/BillingReceiver ( 4740):
E/BillingReceiver ( 4740):
E/BillingReceiver ( 4740):

Action: com.android.vending.billing.IN_APP_NOTIFY
Extra: inapp_signature => ’'<user input, can be sensitive data, e.g., deviceid>’
Extra: response_code => ’'<user input>’

Listing 5: The log data of com.beenverified.android.tests.in_app when it receives a broadcast.

I Service Hijacking Leaks (24)

O Activity Hijacking Leaks (110)

[ Broadcast Theft leaks (9 or 1%)
[ Service Launch Leaks (64)

@ Activity Launch Leaks (534)

@ Broadcast Injection Leaks (245)

Fig. 6: Breakdown of detected PACLs and PPCLs by type.

the Broadcast they access the non-exported Service through
explicit Intent. Therefore, it is normal to have more Broadcast
related leaks.

To summaries, PCLeaks reports 986 leaks among 185
apps, where 5 of them contains both PACLs and PPCLs. we
manually check 20 results, where 15 of them are true positives.
PCLeaks reaches a precision of 75% on the randomly selected
results.

B. Case Study on PPCL

In-app payments’ is an Android application that of-
fers in-app purchases. It contains a Broadcast Receiver
named com.example.dungeons.BillingReceiver,
which logs everything of the received Intent in method
logIntent (). logIntent () is called by the entry
point method named onReceive (). Both logIntent ()
and onReceive () are defined in class com.example.
dungeons.BillingReceiver.

PCLeaks reports a PPCL for In-app payments. To ver-
ify the report, PCLeaksValidator automatically generates an
app, which sends a broadcast message to the detected app
with action named com.android.vending.billing.
IN_APP_NOTIFY and two extras within the Intent. The two
extras are named inapp_signature and response_code. Then,
we manually run the two apps on our test device. No matter
what data stored in the two extras, In-app payments logs all
of them. A piece of the log data is shown in Listing 5.

Note that malicious apps can use this PPCL (without
user intervention) to communicate with each other to avoid
transferring data directly between malicious apps and thereby
bypassing the detection of some specific malware detection
tools. For example, Malicious app 1 first send the data to In-
app payments through a broadcast. Then, In-app payments
logs all the data it received to disk. At last, Malicious app
2 parses the log data of In-app payments to obtain the data
transferring from Malicious app 1.

9https://play.google.com/store/apps/details ?id=com.beenverified.android.
tests.in_app

C. Case Study on PACL

In this case study, we show an application which contains
potential active component leak. More specifically, it contains
an Activity hijacking leak. GetPhoneInfo'? is an app to obtain
the information of the running Android operating system as
well as the running phone itself. The obtained information
include Subscriberld, name of the phone (e.g., HTC One),
SimOperator Name (e.g., Orange) and many others.

All the sensitive data (phone’s information) are ob-
tained in method getInfo () of class GetPhoneInfo.
Then, an implicit Intent is initialized with an action named
android.intent.action.SEND and a type named
message/rfc822. The sensitive data is stored into the In-
tent with an extra named android.intent.extra.TEXT.
After that, startActivity () is called to communicate
with other applications (or components), which also send the
sensitive data to other applications.

MaliciousApp is an Android application automatically gen-
erated by PCLeaksValidator to test whether the app Get-
Phonelnfo will actively leak sensitive data or not. In Mali-
ciousApp, we developed a component which can receive action
android.intent.action.SEND and the data type is set
to /.

We run the two apps on our test device. The results (screen-
shots) are shown in Figure 7. Note that to better illustrate
the results, we refactored the generated malicious apps to
explicitly show the received data in a text view. Figure 7a
shows the app selection screen when startActivity () is
executed. Figure 7b shows the received sensitive data when
user launch the Malicious application. The sensitive data is
transferred from Figure 7a to Figure 7b. That means a PACL
can become a real leak, which exposes the user’s private data
to other applications.

VII. LIMITATIONS

At the moment, we do not handle URIs, which are well
used by Content Provider. Therefore, PCLeaks is not able to
exploit potential leaks on Content Provider. PCLeaks is not
aware of multiple threads, reflections and condition statements.
PCLeaksValidator does not handle URIs to generate incom-
plete malicious apps, which is not able to exploit the corre-
sponding potential component leaks. Currently, PCLeaksVal-
idator only performs string analysis within a single method
which may cause false alarms. PCLeaksValidator is not able
to run the apps to automatically validate the reported potential
component leaks. Some rarely used ICC methods such as
startActivities are not tackled in this work. The native
code used by some apps is not analyzed as well.

10https://play.google.com/store/apps/details 2%id=hello.GetPhoneInfo
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Model Name : HTC One
Device Name : m7
SimOperator Name : Orange
Android Version: 4.2.2
Subscriberld : 270995210223673
java Version: 0.9

VM Name: Dalvik

VM Version: 1.6.0

OS Name : Linux

0S Version: 3.4.10-g28df0d6
SimState: 5

versionCode : 3

versionName : 2.0

Complete action using

m Gmail

u Mail UserAgent

Android/HTC One/Orange/
m7/4.2.2[270995210223673](Java/0.9 Dalvik/1.6.0
Linux/3.4.10-g28df0d6)

-
I&! MaliciousApp

(a) Application Selection when(b) Malicous app hijacks the sen-
startActivity is executed. sitive data.

Fig. 7: A case study about Activity Hijacking Leak. Note that
the name ‘“MaliciousApp” is used to better demonstrate the
Leak. The real malicious app may use lifelike name and icon
to confuse the user.

VIII. RELATED WORK

PCLeaks is developed to detect potential component leaks
in Android apps. Information leaks and component vulnerabil-
ities detection in Android apps are two main research topics
mostly related to our work.

Information leak detection has been studied for decades and
new leaks are still discoved on contemporaty software [24, 25,
26]. Among them, both static analysis and dynamic analysis
are performed. One of the most sophisticated static analysis
approach is FlowDroid [11], a context-, flow-, field-, object-
sensitive and lifecycle-aware static taint analysis tool for
Android apps. It tracks tainted data between pre-defined source
and sink methods. If a tainted data is transferred from a
source method to a sink method, then a information leak is
reported. Several other approaches including SCanDroid [27],
LeakMiner [18] and AndroidLeaks [8] also use static analysis
to detect privacy leaks. TaintDroid [28] is one of the most
sophisticated dynamic approach on detecting privacy leaks in
Android apps. It extends the Android mobile-phone platform
and tracks the flow of privacy sensitive data through third-party
apps at run time. CopperDroid [29] is another dynamic testing
tool which uses stimulating technique to exercise the app to
find malicious activities. More recently, DroidTrack [30] tracks
and visualize the sensitive information diffusion on Android
to prevent sensitive data leaks. However, these approaches
mainly focus on detecting real private data leaks, our approach
is different from them and focuses on detecting potential
component leaks, that is leaks that could be exploited.

Component Vulnerabilities detection is another hot topic
related to our work. CHEX [16] is a tool to detect component
hijacking vulnerabilities in Android applications by tracking

taints between externally accessible interfaces and sensitive
sources. The entry-point model of CHEX requires an enumer-
ation of all possible “split orderings” which is not necessary
in PCLeaks. ComDroid [31] and Epicc [7] are another two
tools that focus on detecting inter-component vulnerabilities.
However, they do not perform sensitive data-flow analysis. In
other words, ComDroid and Epicc are able to detect component
vulnerabilities (e.g., Activity Hijacking, Broadcast Injection).
But they do not detect whether a component vulnerability leaks
sensitive data or not. PCLeaks is different from these tools that
it is based on component vulnerabilities to detect potential
sensitive leaks.

The related works introduced in this section are either
focusing on privacy leaks detection or focusing on component
vulnerabilities. Our approach is using both sides to perform
potential component leaks detection. ContentScope [10] is
a tool similar to our approach which detects sensitive data
leaks on components in Android applications. However, it
only focuses on Content Provider. ContentScope also
detects content pollution in Android applications, which is not
handled currently by PCLeaks. But with little modification
(e.g., defining pollution methods as sink methods for PCLeaks
), our approach is able to detect component pollution. However,
detecting component pollution is out of scope of this paper,
we take it as our further work.

Other state-of-the-art works are trying to enhance the
user privacy by permission removal [32, 33] or trying to
reduce the attack surface of Android applications [34, 35].
DroidForce [36] attempts to enforce complex, data-centric
and system-wide policies for Android apps to constraint the
malicious behavior. Those ideas could be used to complement
our approach to prevent components from leaking sensitive
data but are out of scope of this paper.

IX. CONCLUSION

In this work, we present PCLeaks, a tool to exploit potential
component leaks and PCLeaksValidator, a tool which automat-
ically generates a correspond malicious apps to validate the
results of PCLeaks. Concretely, PCLeaks first builds a precise
control-flow graph for the analyzed apps. Then, it performs
static taint analysis with a well-defined set of source and sink
methods to identify potential active component leaks and also
potential passive component leaks. We test PCLeaks on 2000
apps randomly selected from Google Play. Among the 2000
apps, PCLeaks reports PACLs in 43 apps with 143 leaks and
also reports PPCLs in 147 apps with 843 leaks. By manually
checking 20 results through running the generated malicious
app with its source app, we confirm that 15 (or 75%) of them
are true positives.

In the future work, we would like to enhance PCLeaksVal-
idator to support automatically validating the exploited leaks.
Also, we are working towards automatically repairing Android
application containing potential component leaks.
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