
Alexandre Bartel, SnT, University of Luxembourg

Jacques Klein, SnT, University of Luxembourg

Yves Le Traon, SnT, University of Luxembourg

Martin Monperrus, University of Lille (France)

3 October 2011

Automatically Securing Permission-Based
Software by Reducing the Attack Surface:
An Application to Android

978-2-87971-107-2

Automatically Securing Permission-Based Software by Reducing the Attack Surface:
An Application to Android

Alexandre BartelA, Jacques KleinA, Martin MonperrusB,1 and Yves Le TraonA
A University of Luxembourg, Interdisciplinary Center for Security, Reliability and Trust (SnT)

B University of Lille

Abstract—Android based devices are becoming widespread.
As a result and since those devices contain personal and
confidential data, the security model of the android software
stack has been analyzed extensively. One key feature of the
security model is that applications must declare a list of
permissions they are using to access resources. Using static
analysis, we first extracted a table from the Android API
which maps methods to permissions. Then, we use this mapping
within a tool we developed to check that applications effectively
need all the permissions they declare. Using our tool on a set of
android applications, we found out that a non negligible part
of the applications do not use all the permissions they declare.
Consequently, the attack surface of such applications can be
reduced by removing the non-needed permissions.

Keywords-permissions, call-graph, android, security, soot,
java, static analysis

I. INTRODUCTION

Android is one of the most widespread mobile operating
system in the world accounting 48% market share [5]. More
than 300 000 Android applications available on dozens of
application markets can be installed by end users. The other
side of the coin is that all kinds of malware are waiting to
be installed on thousands of Android devices. For instance,
Zeus [15] sends banking information to malicious servers.
This motivates researchers and engineers to devise security
models, architectures and tools that are able to mitigate the
malware harmfulness.

The security architecture of Android, the Google Chrome
browser extension system and the Blackberry base platform,
all use a similar security model called the permission-based
security model [2]. A permission-based security model can
be loosely defined as a model in which 1) each application
is associated with a set of permissions that allows accessing
certain resources2; 2) permissions are explicitly accepted by
users during the installation process and 3) permissions are
checked at runtime when resources are requested.

This permission model entails intrinsic risks. For in-
stance, not all users may be able to cleverly reject powerful
permissions at installation time. Malwares may also use

1This work was initiated while M. Monperrus was at the Technische
Universität Darmstadt.

2Contrary to the traditional Unix permission system where permissions
are at the level of users, not applications.

platform vulnerabilities to circumvent runtime permission
checks. Finally, applications can be granted more permis-
sions than they actually need, what we call a “permission
gap”. Malwares have many ways to exploit permission
gaps, for instance using code injection or return-oriented
programming [7], and can leverage the unused permissions
for achieving their malicious goals. Identifying permission
gaps means reducing the risks for an application to be
compromised, also known as reducing the application attack
surface [17].

Let us make an analogy with a firewall. In a correctly
configured firewall only the ports that are used are open.
All the other ports are closed. However if the firewall is
misconfigured, some unused ports remain open and the
attack surface of the infrastructure behind the firewall is
larger. For instance, let us assume that an information system
internally uses a remote shell service on port 544. If port 544
is open on the firewall, an attacker could perform attacks on
the remote shell server located behind the firewall. In the
same way, an application that requires too many permissions,
i.e. that suffers from a permission gap, may allow an attacker
who compromised the application to access more resources
than he should have.

Permission gaps appear because the process of declaring
application permissions is manual and error-prone: Android
framework developers manually document which permis-
sions are required for each system resource, and Android
application developers manually declare the permissions
they think are needed. This paper presents an approach to
support those manual software engineering activities with
an automated tool. This approach secures permission-based
software in the sense that it reduces the attack risks (not in
the sense that the resulting software is unattackable).

Our tool, called COPES (COrrect PErmissions Set), pro-
ceeds as follows. First, using static analysis, it extracts from
the Android framework bytecode a table that maps every
method of the API to a set of permissions the method needs
to be executed properly. Second, COPES lists all framework
methods used by an application, based on static analysis of
the application bytecode. Third, COPES computes the set
of permissions that are required for the application to run,
which means that all permissions in this set are used at least

once in the application, and consequently no permission gap
remains. Eventually, COPES computes the permission gap
as the difference between the declared permissions and the
required permission. COPES can also help Android frame-
work experts to comprehensively document the framework
and novice application developers to automatically infer an
initial set of permissions to declare.

To sum up, the contribution of this paper is an approach
to identify and fix permission gaps in permission based
software. More specifically:
• We show that the permission-based security model can

be expressed within a boolean matrix algebra. This
algebra is not specific to Android.

• We present a novel methodology to compute a close
approximation of the required permission set and the
permission gap based on static analysis, as opposed to
concurrent work that uses testing [13].

• We discuss the design and the implementation of the
approach for the Android platform.

• We evaluate our approach on 742 android applications
and we show that 94 applications suffer from a permis-
sion gap.

The reminder of this paper is organized as follows. In
Section II we explain the reason why reducing the attack
surface is important and present a short study supporting
our intuition. In Section III we propose a formalization
for permission-based software and a generic method for
deriving correct application permission sets. In Section IV
we describe the android system and focus on the access
control mechanisms. Then, in Section V we apply the
generic method on the Android system. Experiments we
conducted and results are presented and discussed in Section
VI. We present the related work in Section VII. Finally we
conclude the paper and discuss open research challenges in
Section VIII.

II. THE PERMISSION GAP PROBLEM

This section further details the permission gap problem
introduced in the introduction, and presents short empirical
facts showing that this problem actually happens in practice.

A. Possible Consequence of a Permission Gap

Let us consider an Android application, appwrong, that
is able to communicate with external servers since it is
granted the INTERNET permission. Moreover, appwrong

has declared permission CAMERA while not using it. The
CAMERA permission allows the application to take picture
without user intervention. In this example, the permission
gap consists of one permission: CAMERA.

Unfortunately, appwrong uses a native library on which an
buffer-overflow exploit has recently been discovered. As a
result, appwrong becomes subject to remote attacks through
specific payloads. Consequently, attackers are able to attack
devices that are running appwrong in order to take pictures

using the camera’s device and send them to a remote location
on the Internet.

On the contrary, if appwrong did not declare CAMERA,
this attack would not have been possible, and the conse-
quences of the buffer-overflow exploit would have been
mitigated. As noted by Manadhata [17], reducing the attack
surface does not mean no risks, but less risks.

In order to show that this example of misconfigured
applications is not artificial, we now discuss a short empir-
ical study on the declaration of two permissions on 1000+
Android applications.

B. Declaration and Usage of Permissions CAMERA and
RECORD_AUDIO

We conducted a short empirical study on a 1000+ Android
applications downloaded from an application market (http:
//www.freewarelovers.com/android/).

For two permissions CAMERA and RECORD_AUDIO,
we grepped the source code of the Android framework to
find the methods requiring one of them. These two sets
of methods are noted MCAMERA and MRECORD_AUDIO.
Then, we computed the list A of all the applications which
declare CAMERA or RECORD_AUDIO. Next, we took
each application app ∈ A individually and we checked the
application uses at least one method of MCAMERA and
MRECORD_AUDIO by analyzing the application’s bytecode.
If it is not the case, it meant that app is not using the
corresponding permission. When this happened, we modified
the application manifest that declares the permission and
run the application again to make sure that our grepping
approximation did not yield false positives.

The results are shown in table I. More than 8%
of the applications declaring permissions CAMERA or
RECORD_AUDIO do not use the permission. Those results
confirm our intuition: declared permission lists are not
always required, hence permission gaps exist. Developers
would benefit from a tool that automatically computes the
set of required permissions.

Permission P Declare P Do not use P
CAMERA 82 7 (8.5%)
RECORD_AUDIO 35 3 (8.6%)

Table I
APPLICATIONS THAT DECLARE A PERMISSION BUT DO NOT USE IT

III. MANIFEST INFERENCE

In this Section we formalize the concept of Permission-
Based Software and propose a generic methodology to com-
pute a mapping from code to permissions that are required
for the application to run.

Permission-based software is conceptually divided in
three layers: 1) the core platform which is able to access
all system resources (e.g. change the network policy), it is
generally the operating system; 2) a middleware responsible
for providing a clean application programming interface

(API) to the OS resources and for checking that applications
have the right permissions when they want accessing them;
3) applications built on top of the middleware. They have
to explicitly declare the permissions they require. Layers #2
and #3 motivate the generic label “permission-based soft-
ware”. Since the middleware also hides the OS complexity
and provides an API, it is sometimes called, as in the case
of Android, a “framework”.

We automatically infer the list of permissions required by
an application by executing the following steps:

1) perform a static analysis of the framework to deter-
mine the list of permissions required for every method
of every class of the framework. Let us call this matrix
M . This step has to be done only once for every
framework.

2) perform a static analysis of the application to obtain
a list of framework methods called by the application,
which we normalized in respect to M to obtain the
vector AV (for Access Vector).

3) compute the boolean vectorial product of AV by M
to to obtain the permissions that are actually required
by the application.

We start by defining the different elements of our ap-
proach and then we detail the three aforementioned steps.

A. Definitions

Definition 1 (Framework). A framework F is a layer
that enables applications to access resources available on
the platform. We model it as a bi-partite graph1 between
framework API methods and resources.

Example: In the case of Android, F is the Android Java
Framework composed of 4000 classes and 142000 methods.
To access a resource, an android application has to make a
method call that goes through F .

Definition 2 (Permission-based system). A permission-
based system is composed of at least one framework, a list of
permissions and a list of protected resources. Each protected
resource is associated with a fixed list of permissions

Definition 3 (Entry point). An entry point of a framework
is a method that an application can use. Constructors are
also considered as entry points. We denote EntryF the set
of all entry points of F .

Example: One of the entry points of the Android
framework is the method getAccounts() from class an-
droid.accounts.AccountManager.

An application can call any method of the frame-
work. Some methods accessing some system resources

1a bi-partite graph "is a graph whose vertices can be divided into two
disjoint sets U and V such that every edge connects a vertex in U to one
in V" [26]

(like an account) are protected by one or more permis-
sions. Let us suppose that the method getAccounts() al-
lows access to a set of accounts and is protected by one
permission GET_ACCOUNTS. An application can success-
fully call method getAccounts() if and only if it declared
GET_ACCOUNTS in the application-specific list (this list is
contained in a “manifest”, we shall use this term later in the
paper).

Definition 4 (Permission). A permission is a token that an
application needs to access a specific resource. We make
no assumptions on permissions, and we consider them as
independent (neither grouped, nor hierarchical) .

Example: Developers of an Android application define a list
of permissions in a file called the Manifest. To read contact
information, the manifest of the application must declare the
READ_CONTACT permission.

Permissions can be checked at different levels in the
system. We call high-level permissions the set P =
{p1, p2, ..., pn} of permissions that are checked at the frame-
work level. Low-level permissions are permissions that are
checked at the operating system level.

Definition 5 (High-level permission). A high-level permis-
sion, is a permission that is only checked at the framework
level.

Example: In the case of Android, READ_CONTACT is a
high-level permission.

Definition 6 (Low-level permission). A low-level permis-
sion is a permission associated with a high-level permission
and is checked at a lower level than the framework level.

Example: In this paper we are only interested in high-level
permissions. They are 135 such permissions in the Android
system, while 8 permissions are checked at a low-level. This
shows that the framework is responsible for most of the work
related to permissions. Note that if a permission is checked
at the operating system level, it is not possible to detect that
an application uses it by only analyzing the framework. In
the case of Android, INTERNET is a low-level permission.
Indeed this permission is checked at the filesystem level by
verifying the presence of the inet group ID when accessing
a socket.

Definition 7 (Declared permission). A declared permission
for an application app is a permission which is in the
permission list of app. The set of all declared permission
for an application app is noted Pd(app).

Definition 8 (Required permission). A required permission
for an application app is a permission associated with a
resource that app uses at least once. The set of all required
permissions for an application app is noted Preq(app).

Example: For an application app, if the set of required

permissions Preq(app) is equal to the set of declared per-
missions Pd(app), the permission attack surface is minimal.

Definition 9 (Inferred permission). An inferred permission
for an application app is a permission that an analysis
technique found to be required for app. This paper presents
such a technique and computes a set of inferred permissions
noted Pifrd(app). Depending on the analysis technique
used, the inferred permission list may be either an over- or an
under- approximation of the required permission list. When
using static analysis techniques, the inferred permission list
may be an over approximation (Preq(app) ⊆ Pifrd(app)).
The inferred permission list may be an under-approximation
of the required permission list (Pifrd(app) ⊆ Preq(app))
when using testing techniques2

When developers write manifests, they write Pd(app)by
trying to guess Preq(app) based on documentation and trial-
and-errors. In this paper, we propose to automatically infer a
permission list Pifrd(app) in order to avoid this manual and
error-prone activity. We take a special care in minimizing the
difference between Pifrd(app) and Preq(app).

Let us know that we can compute Pifrd(app) by simply
expressing our definitions in a boolean matrix algebra.
Definition 10 (Access vector). Let app be an application.
The access vector for app is a boolean vector AVapp rep-
resenting the entry points of the framework the application
app can reach. An element of the vector is set to true if the
corresponding entry point can be reached by the application.
Otherwise it is set to false.

Example: Let us consider a framework with three entry
points (e1, e2, e3), and an application app with the following
access vector:

AVapp = (0, 1, 1)

This access vector expresses that app’s code may reach e2
and e3 but not e1.

Definition 11 (Permission Access Matrix). The permission
access matrix M is a boolean matrix which represents
the relation between entry points of the framework and
permissions. Rows represent entry points of the framework
and columns represent permissions. A cell Mi,j is set to
true if the corresponding entry point (at row i) accesses a
resource protected by the permission represented by column
j. Otherwise it is set to false.

Example: For a framework with three entry points (e1,
e2 and e3) and four permissions (p1, p2, p3 and p4), the
permission access matrix could be:

M =


p1 p2 p3 p4

e1 0 0 1 0
e2 0 1 0 0
e3 1 1 1 0


2Indeed, testing will observe only the permissions it executes, potentially

missing some permission checks.

This means that e1 requires permissions p3, e2 requires
permission p2 and that e3 requires permissions p1, p2 and
p3.

Definition 12 (Infered permissions vector). Let app and F
be an application and a framework respectively. The inferred
permissions vector, IPapp, is a boolean vector representing
the set of inferred permissions for application app. We have
IPapp = AVapp ×M by using the boolean operators AND
and OR instead of arithmetic multiplication and addition in
the matrix calculus. A cell IPapp(k) is set to true if the per-
mission at index k is required by app. Otherwise it is set to
false. Note that Pifrd(app) is the set of all permissions set to
true in IPapp, i.e. Pifrd(app)= {permissionx|IPapp(x)}.

Example: Using AVapp and M from the two previous
examples, the inferred permissions vector for app is:

IPapp =
(
0 1 1

)
·

 0 0 1 0
0 1 0 0
1 1 1 0


IPapp =

(
1 1 1 0

)
Application app should declare permissions p1, p2 and p3.

We believe that this model can describes most permission-
based systems.

B. Step 1: Extraction of the Permission Access Matrix M

In this section we present a methodology to extract
the permission access matrix M of a framework F . This
methodology is based on a static analysis of the framework
F . The idea is first to compute a call graph for every entry
point of the framework and then to detect whether or not
permission checks are present in the call graph.

1) Definitions:

Definition 13 (Call graph). A call graph is a directed graph
G containing a set of vertices V representing method calls
and a set of arcs A representing links between method calls.
In other terms, G = (V,A), A = {a|a = (u, v), u, v ∈ V }.

Definition 14 (Permission Enforcement Point). A Permis-
sion Enforcement Point (PEP) is a vertex of a call graph
whose signature corresponds to a system method which
checks permission(s). Each PEP is associated with a list of
required permissions permsPEP .

Example: In the callgraph starting from entry point e4
represented in Figure 1, ck2 is a call to a PEP. This
PEP is a system method which checks permissions like
Context.checkPermission() with the parameter
android.permission.FLASHLIGHT.

2) PEP localization: To localize in which methods PEP
are located, we traverse a call graph G = (V,A) generated
from the framework and check whether a vertex VPEP is
a PEP. Methods which directly check for a permissions
are represented as vertices VMi

(i ∈ {1,2,...,k}), such that
(VMi

, VPEP) ∈ A.

3) Generation of matrix M : We compute one call graph
Gi per entry point ei of the framework (i ∈ {1,2,...,n}).
Then , matrix M is constructed as follows:
• M is set as a matrix of size (|entry points| × |high level

permissions|)
• all elements of M are initialized to false
• for each ei that reaches one ore more PEP, and for each

permission j in permsPEP , M(i, j) = true.
Example: A framework with four entry points
(e1, e2, e3, e4), and three permissions (p1, p2, p3) is
presented in the lower part of Figure 1. For every of those
entry point a call graph is constructed. Three of those call
graphs have a PEP node: e1 and e2 have PEP ck1 which
check permission p1 and e4 has PEP ck2 which check
permission p23. On the figure a dashed arrow connect each
PEP to the permission(s) it checks. The framework matrix
is then:

Mex =


p1 p2 p3

e1 1 0 0
e2 1 0 0
e3 0 0 0
e4 0 1 0


C. Step 2: Extraction of the access vector AV

We now explain how to compute the list of methods (i.e.
the list of entry points) of a framework F called by an
application app in order to extract the access vector AV .

For that purpose we generate a call graph for every entry
point of app and check whether or not a call to an entry
point of F is present in the generated call graph. AV is a
boolean vector and its element correspond to entry points of
F . Thus, the length L of vector AV is the number of entry
points of F . For every entry point of F called in app the
equivalent element of AV is set to true.
Example: The application example in Figure 1 features a
single entry point, s. From s a call graph Gex is generated.
All elements of vector AVex of length n = 4 are initially
set to false:

AVex = (0, 0, 0, 0)

Then for every vertex of Gex which is a call to the
example framework, the corresponding element of AVex is
set to true. In the example, there are three such vertices
(represented as entry points e1, e2 and e3 in the Figure).
This leads to the following vector AVex

AVex = (1, 1, 1, 0)

D. Step 3: Inferred Permission List

Following Definition 12 we compute IPapp the inferred
permission vector. The inferred permission list contains all
permissions set to true in IPapp.

3Notice that p3 is never checked in the framework. Note that the Android
framework defines several permissions which are never checked.

s

2 3 4

5

e1 e2 e3 e4

f1 f2 f3

f4 f5

f6

f8

f9

ck1

ck2

p3

p2

p1

Application

Framework

Figure 1. Application and Framework Example

Example: Using matrix Mex and vector AVex generated
above for the example framework and application repre-
sented in Figure 1, we obtain:

IPex =
(
1 1 1 0

)
·


1 0 0
1 0 0
0 0 0
0 1 0


IPex =

(
1 0 0 0

)
This means application app should only declare permission
p1.

Before applying this generic methodology to the Android
system, we will first have an overview of Android. Under-
standing the target software system is a necessary step to
correctly identify the framework part of the system and know
where and how permissions are checked.

IV. OVERVIEW OF ANDROID

This Section describes the Android system. We detail how
and where access control is enforced regarding high-level
permissions and how applications access the frameworkF .

A. Software Stack

Android is a software stack as shown Figure 2. It fea-
tures a modified Linux kernel, C/C++ libraries, a virtual
machine called Dalvik, a Java framework and a set of basic
applications (including a phone application). Applications
for Android are written in Java. An android application is
packaged into a .apk (android package) file which contains
the Dalvik bytecode, data (pictures, sounds, ...) and the
Android Manifest file. The developer defines permissions
the application may use in this Manifest.

B. Structure of an Application

An Android application is made of components which can
be:
• an Activity which is a user interface

Applications Java

Framework Java/C/C++

Libraries + Dalvik VM C/C++

Kernel CKernel mode

User mode

Figure 2. Android software stack

• a Service which runs in the background
• a BroadcastReceiver which receives Intents (a kind of

message comparable to inter processes communication,
aka IPC)

• a ContentProvider which is a kind of database backend
used to store and share raw data.

An application uses URI (Uniform Resource Identifiers
[24]) to locate and work with local or remote (from other ap-
plications) content providers. Moreover, applications asyn-
chronously communicate with services using Intents through
a system called Binder (e.g. an Intent may be “display the
phone dialer”). We detail services in the following Section
IV-C, as they are widely used by the system for enforcing
permission checks. When performing the static analysis in
Section V we rely on the understanding of the Binder,
described bellow, to reconstruct RPC calls.

C. Services

1) Building a Service: Services are identified in the
source code by two files: (1) an .aidl (Android Interface
Description Language) and (2) a .java file. The AIDL
describes the interface and the Java file implements the
service. From the AIDL file, two static Java classes are
automatically generated at compile time: a proxy (3) and a
stub (4). The stub extends the Binder class and implements
the service’s interface, it is located on the service side and
is extended by (2). The proxy is used on the application side
to call a remote method on the service. A proxy and its stub
communicate through the Binder implemented as a Linux
kernel module and available through /dev/binder.

2) Calling a Service’s Method: The first step for the
application wanting to use a remote service is to dynamically
get a reference to the service. The next step is to call a
method on the reference. The binder intercepts that call and
performs the actual call on the remote service.
Example: We use the AccountManagerService to ex-
emplify Binder communication. An application want-
ing to use the account manager service has first to
call AccountManager.get(Context) a static method
which returns an initialized AccountManager object. Context
is an abstract class implemented by ContextImpl. It allows
an application to access to resources, to launch intents or ac-
tivities and more. The get() method of class AccountMan-
ager calls Context.getSystemService() to fetch a
reference to the binder of the service, retrieves the proxy of
the service and initializes AccountManager with the account

service’s proxy. Internaly, getSystemService() calls
ServiceManager.getService(). This first step is
represented as "step 1" in Figure 3. The application then
uses the initialized AccountManager instance to interact with
the account manager service. The AccountManager instance
uses the service’s proxy to make a method call towards the
service. The proxy in turn uses the binder driver to forward
the call to the remote service’s stub which executes the
remote method and return an answer the client using the
reverse path stub-binder-proxy ("step 2" in Figure 3).

Applications

Activity 1.1

... am
=

A
cc

ou
nt

M
an

ag
er

.g
et

()
;

... am
.g

et
A

cc
ou

nt
s(

);
...

pr
ox

y

pr
ox

y

ServiceManager

... ge
tS

er
vi

ce
(S

tr
in

g)
{

...
}

... ad
dS

er
vi

ce
(S

tr
in

g)
{

...
}

st
ub

SystemServer

A
cc

ou
nt

M
an

ag
er

Se
rv

ic
e

Se
rv

ic
e

2
...

Se
rv

ic
e

N

st
ub

st
ub

st
ub

Binder driver

step 1
step 2

ckP

step 3

Figure 3. Android Binder

3) System Services and Permission Checks: System ser-
vices are specific services running in the system server.
They allow an application to access system resources. Those
resources are protected by android permissions (step 3 in
Figure 3). Consequently, it is there that we extract permis-
sion enforcement points during the static analysis phase
described in Section V. At this point we know how ap-
plications are structured and how they communicate within
the Android system. Note that android permissions are also
checked in C++ services, content providers and when using
intents but we do not consider those checks. This limitation
is discussed in Section VI.

D. Permissions and Application Installation

This section explains that during installation, applications
are given a unique identifier and sometimes specific low-
level permissions in addition to high-level permissions.
Android 2.2 declares in total 142 high-level permissions.
Permissions are enforced at the framework level (ex: to
read contact information an application must have the
READ_CONTACT permission). However, some permissions

Permission GID
BLUETOOTH_ADMIN net_bt_admin
BLUETOOTH net_bt
INTERNET inet
CAMERA camera
READ_LOGS log
WRITE_EXTERNAL_STORAGE sdcard_rw
ACCESS_CACHE_FILESYSTEM cache
DIAGNOSTIC input, diag

Table II
PERMISSIONS ASSOCIATED WITH A LOW-LEVEL GID

could also be associated with low-level group ID of specific
resources (camera, bluetooth, ...). Those permissions, listed
in table II, are indirectly enforced at the kernel level by
checking group IDs (ex: to create a socket an application
has to have the INTERNET permission to be in the inet
group). Note that Android makes it possible for developers
to write native code by using the Native Development Kit
(NDK). However, system resources are either protected by
a low-level permission or not accessible since access to the
filesystem is restricted.

When installing an android application the official way
(through the android market), the user has to approve (or
reject) all the permissions the application has declared in its
manifest. If all permissions are approved, the application is
installed and mapped with the corresponding permissions.
Moreover, it receives a device unique user id (UID) and
a group id (GID) for permissions mapped with a low-
level GID. For instance, an application Foo is given two
GIDs net_bt and inet when associated with permissions
BLUETOOTH and INTERNET, respectively. In other terms,
the standard Unix ACL is used as an implementation means
for checking high-level permissions.

In Section III, we have defined a generic model and
methodology to generate a matrix M which maps entry
points of a frameworkF to permissions. We have seen in
Section IV that the Android system fits in the model and
contains a framework corresponding to F . The next Section
presents the static analysis methodology to extract M from
the Android frameworkF and to infer the list of required
permissions (as opposed to declared permissions) for an
Android application.

V. STATIC ANALYSIS CODE FOR ANDROID

Our approach to detecting permission gaps which was
presented in III is implemented with two tools. One extracts
from a permission-based framework a binary matrix that
maps framework methods to permissions, we call it the
mapper. The other extracts from application code the list of
framework methods used, we call it the sniffer. In COPES,
both tools are designed as static analyses.

Implementing both tools was much more difficult than
expected. In other terms, there was a significant gap be-
tween the regularity and the conciseness of the approach

presented in III and the actual implementation. We came
across different technical issues for which we had to find
creative solutions. This section presents the most important
ones in order to 1) enable other researchers to replicate our
results, and 2) facilitate the implementation of the approach
for another platform.

A. Choosing a bytecode manipulation toolkit

We had to write the mapper and the sniffer on top of
two different toolkits: the mapper uses the Soot analysis
framework developed at McGill University [25]; the sniffer
uses the ASM framework [3]. We had to use two different
toolkits for the following reasons. On the one hand, the code
of the framework is open-source and written in Java, which
is perfectly appropriate for an analysis using Soot. On the
other hand, the application bytecode (we do not have the
source code of applications) is available as Dalvik bytecode,
and this bytecode is transformed to Java bytecode using
a tool called “ded” developed at Penn State University4.
Unfortunately, the resulting bytecode is often not compatible
with Soot for obscure reasons. The lower-level API of ASM
enabled us to overcome these problems.

B. Generating the Call GraphS of a Framework

Generally, a static analysis has a unique entry point to
build a call graph: the “main” method of a program. In the
case of a framework, there is no such thing as a main. Hence,
we had to generate not one call graph but N call graph where
N is the number of different entry points.

Solution: For every public class of the framework (for
Android, android.* and com.android.*), we create
a fake main, consisting of one instance on which all frame-
work methods are called. Then we run the Soot call graph
analysis Spark [16] on each of the generated “fake” entry
points.

C. Extracting Actual Checked Permission Names in Permis-
sion Enforcement Points

Permission Enforcement Points in Android are
method calls to certain method of classes Context
and ContextWrapper (for instance method
checkPermission). While those method calls can
easily be resolved statically, the actual permission(s) that
are checked are dynamically set by a String parameter or
worse, an array of strings. Thus, when a check permission
system method is found in the call graph, the exact
permission(s) has(have) to be extracted.

Solution: We made a Soot plugin which finds PEPs and
extract the corresponding permission(s). This plugin per-
forms an intra-method analysis and manages the following
scenarios: either (1) the permission is directly given as a
string as a parameter, or (2) the permission is stored in
a variable which is given as a parameter, or (3) an array

4http://siis.cse.psu.edu/ded/

is initialized with several permissions and is given as a
parameter. In every case we do a backward analysis of
the method’s bytecode using Soot’s Unit Graphs which
describe relations among statements of a method. In the
case where only one permission is given to the method,
the first statement in the unit graph containing a reference
to a valid Android permission String is extracted and the
permission added to the list of the permissions needed by the
method under analysis. In case of an array, all permissions
of references to Android permission Strings are added to the
list.

D. Handling Inter-Process Communication through the
Binder

Static analysis can not handle call to services since they
are done again dynamically through the binder (see IV).
Consequently, the resulting call graphs are incomplete.

Solution: Our key insight is that the binding uses a lookup
table that is instantiated once at runtime. We intercepted
this lookup table and use it in a Soot plugin to redirect
every proxy call to the concrete class which implements the
service. In other terms, we feed the call graph engine with
this domain specific information that it does not know.

E. Service Identity Inversion
In Android, services can call other services either with the

identity of the initial caller (by default) or with the identity
of the service itself. In the later case, remote calls are within
clearIdentity() and restoreIdentity() method
calls. When using the service identity, the permission checks
are not done against the caller’s declared permissions, but
against the service’s declared permissions. This mechanism
is sometimes used for privilege escalation attacks. In our
context, this mechanism yield too many inferred permis-
sions. For instance, let us assume that service A requires
permission θ which is not declared by service B, if B calls
A with the identity of A itself, there is no reason to add θ
in the list of required permissions

Solution: We analyze the call graphs to find permission
checks that occur between calls to clearIdentity()
and restoreIdentity(). Those PEPs are discarded.

F. Reflection in the Framework
If the framework uses reflection, then the call graph

construction is incomplete by construction.
Solution:
Fortunately, the Android framework uses reflection in

only 7 classes. We manually analyzed their source code.
Five of those classes are debugging classes. The View
class uses reflection for handling animations. Finally, the
VCardComposer uses reflection in a branch that is only
executed for testing purpose. In all cases, the code is not
related to system resources hence no permission checks at
all are done. This does not impact the static analysis of the
Android framework.

G. Dynamic Class Loading in the Framework

The Java language has the possibility to load classes
dynamically. When used this features makes static analysis
impossible since the loaded class is only known at runtime.

Solution:
We found that eight classes of the Android system are

using the loadClass method. After manual check, six
of them are system management classes and either are
not linked to permission checks (ex: instrumenting an ap-
plication) or have to be accessed through a service. Two
are related to the webkit packaged. They are used in the
LoadFile and PluginManager classes. In both cases,
permissions are checked before loading classes, and not in-
side the loaded classes. Thus, there is no missed permission
enforcement points either.

H. Recapitulation

We have presented the core technical issues we encoun-
tered while implementing our approach. We think that those
problems may arise in other permission-based platforms than
Android, and that identifying them and their solutions can
be of great help for future work. Last not but not least, those
points are crucial for replication of our results.

VI. EVALUATION

This section presents an evaluation of our approach.
First, we discuss the permission map extracted by static
analysis, and compare it to the map extracted by Felt et
al.[13] by testing. Then, we show that our approach actually
detects permission gaps in real applications published on an
application store.

A. Evaluation of Extracted Permission Map M

We ran our automatic tool on the Android v2.2 bytecode
and obtained a matrix M composed of 3957 methods which
check at least one of 96 high-level permissions. Since one
method checks at most an handful methods, this binary
matrix is very sparse, it mostly contains zeros and a few
ones (the number of permission checks). We find that the
Android framework v2.2 contains a total 4852 permission
checks. The computation of the full matrix is done with two
hours on a Desktop Dell dual quad-core 2.4GHz with 24 Go
RAM.

Let us now compares our map with Felt et al.’s one. They
have 1282 methods which check permissions in their table.
We have more than the double number of methods because
in our analysis we even take into account methods which
can not be reached directly by applications (ex: internal
methods of services). This has no impact on the correctness
of when inferring permission gaps in Android applications,
our table is only more exhaustive. We have similar results
(same permission set for a specific method signature) for
918 methods. However, the table differs for 393 methods.
Let us now discuss this discrepancy.

Case #1: We find more permission checks In our matrix,
there is one ore more additional permissions for 146 methods
(1 additional permission for 127 methods, 2 for 13 methods,
3 for 5 and 4 for 1 method). Those permissions are either
never checked or checked within a specific environment con-
text. This result is typical when comparing a static analysis
approach against a testing one: static analysis sometimes
suffers from analyzing all code (including debugging and
dead code), but is strong at abstracting over input data. For
instance, our static analysis yields permissions which are in
the call graph (mostly due to debugging code), yet never
checked in production. Hence, when Felt et al. simulate the
production environment, they do not find those checks.

On the contrary, we are able to find permissions
that are checked within specific contexts that were not
taken into account by the generated tests. For instance,
MOUNT_UNMOUNT_FILESYSTEMS is only checked for
method MountService.shutdown() if the media (stor-
age device) is "present not mounted and shared via USB
mass storage". Another permission, READ_PHONE_STATE
is needed for method CallerInfo.getCallerId()
only if the phone number passed in parameter is the voice
mail number. This test case was not generated by Felt’s test-
ing approach. In real applications, test generation techniques
can not guarantee a comprehensive exploration of the input
space.
Case #2: We find less permission checks As already
mentioned, we only analyze the permission checks that are at
the level of the Java framework. Consequently, our approach
misses permission checks performed at the level of C++
libraries related to services, content providers or intents. In
total, 247 methods in our matrix miss at least one permis-
sion. For instance MODIFY_AUDIO_SETTINGS is checked
in a C++ service and WRITE_SECURE_SETTINGS is
associated with content providers.
Recapitulation Those results highlight the key conceptual
differences between static analysis and testing in the context
of permission inference. We think that that the static analysis
approach is complementary to the testing approach. Indeed,
the testing approach yields an under-approximation which
misses some permission checks whereas the static analysis
approach yields an over-approximation in which those miss-
ing permission checks are found. Using both approaches in
collaboration would enable developers to obtain a lower and
a upper bound of the permission gap.

B. Permission Gaps in Real Applications

When analyzing permissions on Android appplications,
we want to guarantee that our inferred permissions are
correct. Hence, we do not claim inferring low-level permis-
sions. Furthermore, our comparison with Felt’s table has
shown that 15 high-level permissions are checked in the
Java framework but not only. In the following, we discard
those permissions, and from a initial set of 96 permissions,

Permission set Number of Methods†

#Methods in [13] 1282
#Methods (us) 3957
Identical 918 (71.6%)

Different we find less permission checks 247 (19.2%)
we find more permission checks 146 (11.4%)

Table III
COMPARISON WITH [13]. THE DISCREPANCY IS DUE TO THE

CONCEPTUAL DIFFERENCES BETWEEN STATIC ANALYSIS AND TESTING.

† the total is 102.2% because there are about 2% of methods which have, at the
same time, missing or additional permissions.

we infer permission gaps related to 71 permissions (96-15).
Hence we claim that we never miss a required permission
in our inference (given the assumptions discussed in V).

We ran our tool on 1329 android applications from an
alternative android market5. From those, the 587 that are
using reflection and/or class loading are not checked. On
the 742 remaining applications, 94 are declaring one or
more permissions which they do not use. Consequently, we
identify a permission gap for 94 Android applications. We
define the “area of the attack surface” (related to permission
gaps) as the number of unnecessary permission. In all,
among applications suffering from a permission gap, 76.6%
have an attack surface of 1 permission, 19.2% have an attack
surface of 2 permissions, 2,1% of 3 permissions and also
2,1% of 4 permissions.

Table IV represents the top ten declared but not used
permissions among all 94 applications. The associate fre-
quency corresponds to the ratio of the number of applications
which declare but do not use the permission, over the
number of applications which declare the permission. For
example, 70.59% of the applications declaring permission
ACCESS_LOCATION_EXTRA_COMMANDS, do not actually
use it.

We used the online tool from Felt et al. available at http:
//android-permissions.org/index.html to analyze the same
set of applications. Their results are similar as ours. All
applications suffering from a permission gap are also found
by Felt’s tool. This means that the divergence in inferred
map are not crucial for this dataset.

To sum up, those results show that permission gaps exists,
and that our tool allows developers to correct the declared
permission list in order to reduce the attack surface of
permission-based software.

VII. RELATED WORK

Indeed, we have presented an approach to reduce the
attack surface of Android applications. The concept of “at-
tack surface” was introduced by Manadhata and colleagues
[17], it describes all manners in which an adversary can
enter the system and potentially cause damage. This paper
describes a method to identify the attack surface of Android

5www.freewarelovers.com/android

Permission Wrong Usage
ACCESS_LOCATION_EXTRA_COMMANDS 70.59%
BATTERY_STATS 62.50%
ACCESS_MOCK_LOCATION 38.46%
SET_ORIENTATION 35.71%
GET_TASKS 10.26%
ACCESS_WIFI_STATE 7.89%
WAKE_LOCK 5.13%
VIBRATE 3.61%
ACCESS_COARSE_LOCATION 2.84%
ACCESS_FINE_LOCATION 1.47%

Table IV
TOP TEN OF DECLARED BUT NOT USED PERMISSIONS

applications, which is a important research challenge given
the sheer popularity of the Android platform. In the context
of Android, reducing the attack surface is adhering to the
principle of least privileges introduced by Saltzer [22].

The Android security model has been described as much
in the gray literature [9, 23] as in the official documentation
[1]. Different kinds of issues have been studied such as social
engineering attacks [15], collusion attacks [18], privacy leaks
[14] and privilege escalation attacks [7, 12]. In contrast,
this paper does not describe a particular weakness but
rather a software engineering approach to reduce to potential
vulnerabilities.

However, we are not describing a new security model for
Android as done by [4, 6, 8, 19, 20]. For instance, Quire
[8] maintains at runtime the call chain and data provenance
of requests to prevent certain kinds of attacks. In this paper,
we do not modify the existing Android security model and
we devise an approach to mitigate its intrinsic problems.

Also, different authors empirically explored the usage
of the Android model. For instance, Barrera et al. [2]
presented an empirical study on how permissions are used.
In particular, they used visualizing techniques such as self-
organizing maps to identify patterns of permissions depend-
ing on the application domain, and patterns of permission
grouping. Other empirical studies include Felt’s one [11]
on the effectiveness of the permission model, and Roesner’s
one [21] on how users react to permission-based systems.
While our paper also contains an empirical part, it is also
operational because we devise an operational software engi-
neering approach to tame permission-based security models
in general and Android’s one in particular.

Enck et al [10] presented an approach to detect dangerous
permissions and malicious permission groups. They devised
a language to express rules which are expressed by security
experts. Rules that do not hold at installation time indicate
a potential security problem hence a high attack surface.
Our goal is different, we don’t aim at identifying risks
identified from experts, but to identify the gap between the
application’s permission specification and the actual usage
of platform resources and services. Contrary to [10], our
approach is fully automated and does not involve an expert

in the process.
Finally, Felt et al. [13] concurrently worked on the same

topic as this paper. They published a very first version of
the map between developer’s resources (e.g. API calls) and
permissions. Interestingly, we took two completely different
approaches to identify the map: while they use testing, we
use static analysis. As a result, our work validates most of
their results although we found several discrepancies that we
discussed in details in Section VI. But the key difference is
that our approach is fully automated while theirs requires
manually providing testing “seeds” (such as input values).
However, in the presence of reflection, their approach works
better if the tests are appropriate. Hence, we consider that
both approaches are complementary, both at the conceptual
level for permission-based architectures, and concretely for
the reverse-engineering Android permissions.

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a generic approach to
reduce the attack surface of permission-based software. We
have extensively discussed the problematic consequences of
having more permissions than necessary and showed that the
problem can be mitigated using static analysis. The approach
has been fully implemented for Android, a permission-based
platform for mobile devices. Our prototype implementation
is able to automatically find 4852 permission checks in the
Android framework. In a permission-based framework, all
those checks have to be documented, hence our approach
does a significant job in achieving this task in a systematic
manner. For end-user applications, our evaluation revealed
that 94/742 crawled applications from an application store
for Android indeed suffer from permission gaps. We have
also shown that our static analysis based approach is com-
plementary to concurrent work [13] based on testing.

The security architecture of permission based software in
general and Android in particular is complex. In this paper,
we abstracted over several characteristics of the platform
such as low-level permissions. We are now working on a
modular approach that would be able to analyze native code
and bytecode and to combine the permission information
from both. Furthermore, we are exploring how to express
permission enforcement as a cross cutting concern, in order
to automatically add or remove permission enforcement
points at the level of application or the framework, according
to the security specification.

ACKNOWLEDGEMENTS

The present project is supported by the National Research
Fund, Luxembourg.

REFERENCES

[1] The android developer’s guide. http://developer.
android.com/guide/index.html, 2011. Last-accessed:
2011-09-10.

[2] David Barrera, Hilmi Günes Kayacik, Paul C. van
Oorschot, and Anil Somayaji. A methodology for
empirical analysis of permission-based security models
and its application to android. In ACM Conference on
Computer and Communications Security (CCS 2010),
pages 73–84, Chicago, Illinois, USA, October 4-8,
2010.

[3] Eric Bruneton. ASM 3.0, a Java bytecode engineering
library. http://download.forge.objectweb.org/asm/asm-
guide.pdf, 2007.

[4] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko,
Thomas Fischer, and Ahmad-Reza Sadeghi. Xman-
droid: A new android evolution to mitigate privilege
escalation attacks. Technical Report TR-2011-04,
Technische Universität Darmstadt, Apr 2011.

[5] Canalys. Android takes almost 50% share
of worldwide smart phone market, 2011.
http://www.canalys.com/static/press_release/2011/
canalys-press-release-010811-android-takes-almost-
50-share-worldwide-smart-phone-market_0.pdf.

[6] Mauro Conti, Vu Thien Nga Nguyen, and Bruno
Crispo. Crepe: context-related policy enforcement for
android. In Proceedings of the 13th international con-
ference on Information security, ISC’10, pages 331–
345, Berlin, Heidelberg, 2011. Springer-Verlag.

[7] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, and Marcel Winandy. Privilege escalation
attacks on android. In Proceedings of the 13th Inter-
national Conference on Information Security, ISC’10,
pages 346–360, Berlin, Heidelberg, 2011. Springer-
Verlag.

[8] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei
Shu, and Dan S. Wallach. Quire: Lightweight prove-
nance for smart phone operating systems. In 20th
USENIX Security Symposium, August 2011.

[9] W. Enck and FOO. Understanding android security.
2009.

[10] William Enck, Machigar Ongtang, and Patrick Mc-
Daniel. On lightweight mobile phone application cer-
tification. In Proceedings of the 16th ACM conference
on Computer and communications security, CCS ’09,
pages 235–245, New York, NY, USA, 2009. ACM.

[11] Adrienne Porter Felt, Kate Greenwood, and David
Wagner. The effectiveness of application permissions.
In Proceedings of the 2nd USENIX conference on
Web application development, WebApps’11, pages 7–
7, Berkeley, CA, USA, 2011. USENIX Association.

[12] Adrienne Porter Felt, Helen Wang, Alex Moshchuk,
Steven Hanna, and Erika Chin. Permission re-
delegation: Attacks and defenses. In Proceedings of
the 20th USENIX Security Symposium, 2011.

[13] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. Technical Report
UCB/EECS-2011-48, University of California, Berke-

ley, 2011.
[14] Clint Gibler, Jonathan Crussel, Jeremy Erickson, and

Hao Chen. Androidleaks detecting privacy leaks in
android applications. Technical report, UC Davis,
2011.

[15] Stefanie Hoffman. Zeus banking trojan variant attacks
android smartphones. CRN, 2011.

[16] Ondřej Lhoták and Laurie Hendren. Scaling Java
points-to analysis using Spark. In G. Hedin, edi-
tor, Compiler Construction, 12th International Confer-
ence, volume 2622 of LNCS, pages 153–169, Warsaw,
Poland, April 2003. Springer.

[17] P.K. Manadhata and J.M. Wing. An attack surface
metric. Software Engineering, IEEE Transactions on,
37(3):371 –386, may-june 2011.

[18] Claudio Marforio, Aurélien Francillon, and Srd-
jan Čapkun. Application collusion attack on the
permission-based security model and its implications
for modern smartphone systems. Technical Report 724,
ETH Zurich, April 2011.

[19] Mohammad Nauman, Sohail Khan, and Xinwen
Zhang. Apex: extending android permission model and
enforcement with user-defined runtime constraints. In
Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security, 2010.

[20] Machigar Ongtang, Stephen McLaughlin, William
Enck, and Patrick McDanie. Semantically rich
application-centric security in androi. Journal of Se-
curity and Communication Networks, 2011.

[21] Franziska Roesner, Tadayoshi Kohno, Alexander
Moshchuk, Bryan Parno, Helen J. Wang, and Crispin
Cowan. User-driven access control: Rethinking permis-
sion granting in modern operating systems. Technical
Report MSR-TR-2011-91, Microsoft Research, 2011.

[22] Jerome H. Saltzer and Michael D. Schroeder. The
protection of information in computer systems. In
Proceedings of the IEEE, 1975.

[23] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval
Elovici, and Shlomi Dolev. Google android: A state-
of-the-art review of security mechanisms. CoRR,
abs/0912.5101, 2009.

[24] L. Masinter T. Berners Lee, R. Fielding. Uniform
Resource Identifiers (URI): Generic Syntax. RFC 2396,
August 1998.

[25] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan,
Etienne Gagnon Patrick Lam, and Phong Co. Soot
- a java optimization framework. In Proceedings of
CASCON 1999, pages 125–135, 1999.

[26] Wikipedia. Bipartite graph. http://en.wikipedia.org/
wiki/Bipartite_graph.

