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Abstract
The invalid object initialization vulnerability has been
known at least since the 1990’s when discovered by a
research group at Princeton University. Recently, such
a vulnerability, identified as CVE-2017-3289, was found
again in the bytecode validation code of the Java virtual
machine. In this paper, we explain what the vulnerabil-
ity is and how it could be used to bypass Java sandbox
restrictions, leading to a situation in which the security
of the Java virtual machine is compromised. We then
present a solution called MUSTI to detect and prevent at-
tacks leveraging this kind of critical vulnerability at run-
time. MUSTI, has been evaluated on the Dacapo Java
benchmark as well as on real-world programs and has a
runtime overhead below 5%. We also show how MUSTI
can be optimized to have a runtime overhead below 1%.

1 Introduction

When the Java language was introduced in the mid-
1990’s, it was thought that the language is more secure
than C/C++ because it does not allow to directly manip-
ulate the memory – it uses a garbage collector instead –
and because array bounds are automatically checked at
runtime. This design makes certain vulnerabilities such
as buffer overflows a thing of the past. Unfortunately, the
Java Virtual Machine (JVM) and part of the Java library
are still written in C/C++ code which makes the whole
Java architecture still vulnerable to low level attacks.

Another Java feature, emphasized by Sun Microsys-
tems at the time, is the fact that the JVM can run un-
trusted code in a sandbox and give this untrusted code
only limited or no privilege at all. This was particularly
convenient in web browser which could execute such un-
trusted code in so called Applets [2] with the least privi-
leges. Alas, even though the security architecture seemed
fine, numerous security vulnerabilities have been found
in Java which enable, in most cases, a total sandbox es-
cape. This means that if an attacker can redirect a user to

a web page he controls, he can run malicious Java code
on the user’s browser to escape the sandbox and poten-
tially run code with the privileges of the web browser.
The situation was so alarming for Java and other plugins
based on the NPAPI, that major companies developing
web browsers such as Google [10] and Mozilla [11] de-
cided to first disable them by default and to then remove
them altogether.

Today, a typical computer user navigates the world
wide web without executing any Java code within his
browser. However, it may still be the case that compa-
nies who rely on legacy software require their employ-
ees to activate the Java plugin in their browsers to access
specific services. Also, some computer users – not nec-
essarily within a company – may also choose to re-enable
Java to access a particular service. Forcing the browser to
use Java increases the attack surface and thus puts users
at risk. As we will see in this paper, invalid object initial-
ization vulnerabilities allow to bypass the Java sandbox.
Our approach aims at improving the Java virtual machine
to prevent such vulnerabilities at runtime.

Meanwhile, Oracle 1 did a lot of effort to improve the
security of the Java platform. One approach they used is
to reduce the attack surface. Indeed, the Java Class Li-
brary (JCL) has numerous legacy classes which are prone
to contain security vulnerabilities. By marking them as
“restricted” an attacker cannot directly instantiate them
anymore and thus cannot use code that might have been
useful to perform his attack. This effectively breaks ex-
isting exploits relying on such classes but also makes it
harder for the attacker to find new code he can leverage
in a new attack.

Oracle also developed an approach to automate the
process of verifying the code and finding new security
vulnerability [14]. The approach taints untrusted user
data and checks if it flows to security sensitive operations
such as the loading of a class in a privileged context. If it

1Oracle completed the acquisition of Sun Microsystems in 2010
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does, the approach makes sure that objects created by the
security sensitive operation do not flow back to the user
context. This prevents, in our example, an attacker from
using a class loaded by a security sensitive operation.

Unfortunately, despite these efforts, new vulnerabil-
ities have been found. One the latest vulnerabilities,
CVE-2017-3289 – an invalid object initialization vulner-
ability – is studied in this paper. We understand how
the vulnerability works and devise a solution to prevent
attacks at runtime. The contributions we make are the
following:

• We analyze a recent Java vulnerability and a de-
velop proof-of-concept for it

• We analyze the root causes leading to invalid object
initialization vulnerabilities

• We propose an open-source solution, MUSTI, to
prevent Java sandbox bypasses leveraging uninitial-
ized instance vulnerabilities

• We evaluate MUSTI in terms of detection, runtime
overhead and memory overhead

This paper is organized as follows. First, in Section 2,
the Java security model is presented. Then, we explain
what the invalid object initialization vulnerability is in
Section 3. In Section 4 we present our approach to pre-
vent the vulnerability at runtime. We evaluate our ap-
proach in Section 5. In Sections 6 and 7 we describe
the limitations of the approach and discuss potential im-
provements. Related work is presented in Section 8. Fi-
nally, we conclude in Section 9.

2 The Java Security Model

In this section, we briefly present the fundamental con-
cepts that are required to understand the Java security
model: security policy, security domains, permissions,
the security manager and the doPrivilege method.

2.1 Security Policy
Java code can be associated with a security policy. The
policy is a list of permissions describing what the code is
allowed to do. Usually, it makes sense to give more per-
mission to trusted code and the least permissions possible
to untrusted code. For instance, trusted server code can
run with all permissions, while untrusted code running
in the browser runs with no permission. To prevent the
code from performing forbidden operations, Java runs
untrusted code within a sandbox. For every sensitive op-
eration the code tries to perform, the sandbox checks at
runtime that the code is authorized. If it is not, a secu-
rity exception is thrown. Untrusted code typically has no

System Classes (Trusted code)

1 c l a s s C l a s s L o a d e r {
2 p r o t e c t e d C l a s s L o a d e r ( ) {
3 t h i s ( c h e c k C r e a t e C l a s s L o a d e r ( ) ,

g e t S y s t e m C l a s s L o a d e r ( ) ) ;
4 }
5
6 p r i v a t e s t a t i c vo id c h e c k C r e a t e C l a s s L o a d e r ( ) {
7 S e c u r i t y M a n a g e r s e c u r i t y = System .

g e t S e c u r i t y M a n a g e r ( ) ;
8 i f ( s e c u r i t y != n u l l ) {
9 s e c u r i t y . c h e c k C r e a t e C l a s s L o a d e r ( ) ;

10 }
11 re turn n u l l ;
12 }
13 }
14
15 c l a s s S e c u r i t y M a n a g e r {
16 p u b l i c vo id c h e c k C r e a t e C l a s s L o a d e r ( ) {
17 c h e c k P e r m i s s i o n ( S e c u r i t y C o n s t a n t s .

CREATE CLASSLOADER PERMISSION) ;
18 }
19 }

Application Classes (Untrusted code)

20 c l a s s Unt rus t edMain {
21 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
22 C l a s s L o a d e r myCL = new C l a s s L o a d e r ( ) { } ;
23 }
24 }

Figure 1: Code without the CREATE CLASSLOADER

permission (UntrustedMain) cannot instantiate a class
loader (line 22) because the security check (line 17) will
throw a security exception.

permission and, thus, cannot access the file system, the
network, etc..

2.2 Security Domain

Every class in the JVM is loaded with a class loader and
associated with a security domain. Classes shipped with
the JRE (Java Runtime Environment) also known as sys-
tem classes, are loaded with all permissions. An exam-
ple of a system class is java.lang.Class. Untrusted
classes downloaded from the Internet and running in an
applet, or more generally all classes coming from an un-
trusted source, should be loaded with no permissions.
Trusted classes can be loaded with all permissions but
should be loaded with the least permissions to respect
the principle of least privilege [24].

In this paper we suppose that the user is running un-
trusted code on the Java virtual machine. The untrusted
code runs within the sandbox without any permission.

2.3 The Security Manager

Permissions are only checked when a security manager
has been created and set. This can be done programmat-
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SecurityManager.checkPermission()
SecurityManager.checkCreateClassLoader() (line 16)
ClassLoader.checkCreateClassLoader() (line 6)
ClassLoader() (line 2)
UntrustedMain.main() (line 21)

Figure 2: Call stack when the checkPermission

method is called (Figure 1 line 17).

ically via a call to System.setSecurityManager() or
with a command line option when launching the Java
virtual machine. How the security manager is used
when checking permissions is illustrated in Figure 1.
In the constructor of the ClassLoader class there is
a call to checkCreateClassLoader() (line 3). This
method then calls checkCreateClassLoader of the
security manager (line 9). Finally, the security man-
ager calls checkPermission() to check for permission
CREATE CLASSLOADER (line 17). Notice that the security
check is only performed if a security manager is set (lines
7-8). Thus, with a security manager set, untrusted code
cannot instantiate a subclass of a ClassLoader since the
constructor checks for the CREATE CLASSLOADER per-
mission.

2.4 Permission Checks

2.4.1 Normal Permission Check

When a permission check is performed, all elements
of the stack trace (all methods that have been called
since main()) are analyzed and must have the right per-
mission. Otherwise, a SecurityException is thrown.
When the code of Figure 1 is executed and reaches line
17, it has the call stack with five elements illustrated Fig-
ure 2. The checkPermission method goes backwards
when analyzing the call stack. The three last methods
ClassLoader(), checkCreateClassLoader() and
checkCreateClassLoader() are from system classes
and thus, have the right permission. Method main(),
however, is from of an untrusted class, and does not
have the CREATE CLASSLOADER permission. Thus,
checkPermission throws a SecurityException,
which prevents the ClassLoader from being instanti-
ated.

2.4.2 Do More with Less

Sometimes, code from the JCL (Java Class Library) has
to execute codepriv, that may require more privilege than
the current privileges of the running code which may
be potentially untrusted code with no permission. To
achieve that, Java comes with a built-in functionality

1 s t a t i c boolean u n a l i g n e d ( ) {
2 i f ( unal ignedKnown )
3 re turn u n a l i g n e d ;
4 S t r i n g a r c h = A c c e s s C o n t r o l l e r . d o P r i v i l e g e d (
5 new sun . s e c u r i t y . a c t i o n . G e t P r o p e r t y A c t i o n (
6 ” os . a r c h ” )
7 ) ;
8 u n a l i g n e d = a r c h . e q u a l s ( ” i386 ” )
9 | | a r c h . e q u a l s ( ” x86 ” )

10 | | a r c h . e q u a l s ( ”amd64” )
11 | | a r c h . e q u a l s ( ” x86 64 ” ) ;
12 unal ignedKnown = t rue ;
13 re turn u n a l i g n e d ;
14 }

Figure 3: Example of doPrivileged call to read the
sys.arch system property.

called doPrivileged(). With the doPrivileged()

all 2 permissions are temporarily given to the code to
execute codepriv. An example of doPrivileged() is
illustrated in Figure 3. The code at lines five and six
requires a permission to get a system property. With-
out doPrivileged, this code would have thrown a se-
curity exception since the stack check would have hit
the main() method which is potentially from an un-
trusted class with no permission. With doPrivileged,
the stack check is still performed backwards but stops at
the doPrivileged method. This enables untrusted code
to execute code that temporarily require one or more per-
missions.

3 Uninitialized Instance Vulnerability

3.1 What it is
An uninitialized instance vulnerability enables the cre-
ation of an object which is not properly initialized. In
the case of Java, this means that the chain of calls to con-
structors is broken resulting in some constructor methods
not being called. The consequences are the following:

• code that should be executed may not be executed

• fields that should be initialized may not be initial-
ized and may thus end up having “default” values
(e.g., null for references)

Take the example of Figure 4 representing the class hi-
erarchy of hypothetical Java library classes A, B and C.
In this example, class C extends A and classes A and B
both extend Ob ject. In a normal program instantiating a
new object of type C, the constructor of C starts execut-
ing. The first instruction of the constructor actually calls
the constructor of A (Figure 5 line 11 right) which im-
mediately calls the constructor of Ob ject (Figure 5 line

2all or a subset of permissions
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Figure 4: Class hierarchy for Java library classes A, B
and C (representing trusted code) and application defined
classes D and E (representing untrusted code).

10 left). When the constructor of Ob ject terminates, the
execution goes back in the constructor of A which contin-
ues and terminates. Finally, the constructor C continues
and also terminates.

An uninitialized instance vulnerability allows to cre-
ate an instance of an object whose constructor will not
call the constructor of its super class (e.g., by exploiting
a bug in the bytecode verifier). More concretely, if we
have class E extending A and class D extending B (Fig-
ure 4), the vulnerability allows to create objects of type
E without calling A’s constructor or objects of type D
without calling B’s constructor.

3.2 Impact on Security

If access control or other security mechanisms rely on
the value of fields initialized in constructors, an analyst
could be able to bypass them by setting the field values to
default values. Likewise, if security checks are directly
performed in constructor code an analyst may be able to
bypass them by not executing the code.

Figure 5 illustrates these two kinds of vulnerable code.
The authorization check in the constructor is illustrated
in the constructor of class B. If class B has a subclass
such as D, controlled by the analyst, the constructor of B
will not be called from D during an attack. The con-
sequence is that the analyst can instantiate objects he
should not be able to. Without the invalid object ini-
tialization vulnerability, the instantiation of such object
would have thrown a security exception at runtime.

For the sake of completeness we also describe here the
impact of uninitialized fields. The field used as condition
for access control is illustrated in method A.m (lines 14-
18, left). If class A has a subclass such as E, controlled

1 c l a s s O b j e c t {
2 <i n i t >() {
3 . . .
4 }
5 }
6
7 c l a s s A {
8 boo l f o r b i d d e n ;
9 <i n i t >() {

10 super ( ) ;
11 f o r b i d d e n = t rue ;
12 . . .
13 }
14 void m( ) {
15 i f ( f o r b i d d e n ) {
16 re turn ;
17 }
18 . . .
19 }

1 c l a s s B {
2 <i n i t >() {
3 super ( ) ;
4 c h e c k P e r m i s s i o n ( ” P1 ” ) ;
5 . . .
6 }
7 }
8
9 c l a s s C {

10 <i n i t >() {
11 super ( ) ;
12 . . .
13 }
14 }

Figure 5: Constructor code for classes Ob ject, A, B and
C. Note that constructor B is checking for permission P1
and method m from class A is using a field initialized in
a constructor for access control.

by the analyst, the constructor of E will not call the con-
structor of A. The consequence is that field f orbidden
will have the default value of f alse. Any subsequent
call to method A.m will succeed since the access control
check is bypassed. Note that we assume it is bad practice
and quite rare to use fields for access control. Finding
such fields is thus out of the scope of this paper.

3.3 Vulnerability History

As far as we know, there are at least three publicly known
invalid object initialization vulnerabilities for Java. The
first publicly known invalid object initialization vulner-
ability has been found by a research group at Princeton
in 1996 [16]. The vulnerability lies within the bytecode
verifier. It allows for a constructor to catch exceptions
thrown by a call to super() and return a partially initial-
ized object. Note that at the time of this attack the class
loader class did not have any instance variable. Thus,
leveraging the vulnerability to instantiate a class loader
gave a fully initialized class loader on which any method
could be called. The second has been discovered by
LSD 3 in 2002 [19]. The authors also exploited a vulner-
ability in the bytecode verifier which enables to not call
the constructor of the super class. They have not been
able to develop an exploit to completely escape the sand-
box. They were able, however, to access the network and
read and write files to the disk. The last one has been
made public in 2017 and is CVE-2017-3289. This vul-
nerability is also a bug in the bytecode verifier and might
allow an attacker to completely bypass the Java sandbox.

3a security research group called The Last Stage of Delirium
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Figure 6: Simplified View of the Java Runtime: The
JVM loads bytecode and may verify it before it is exe-
cuted by one of the execution engines (Template, C1 or
C2)

4 Preventing the Vulnerability

Our approach aims at preventing the exploitation of the
vulnerability at runtime. We patch the Java virtual ma-
chine to add code which checks that objects have been
correctly initialized, i.e. that the chain of constructors
has not been broken. To understand where to patch the
virtual machine we first have to understand how it loads
and represents the code.

4.1 Code Loading in the JVM
As illustrated in Figure 6, the Java Virtual Machine
(JVM) loads only bytecode. The bytecode however, can
originate from multiple sources: compiled by the Java
compiler (the usual), downloaded from the network, gen-
erated at runtime, or assembled manually (typical for ex-
ploiting a vulnerability in the bytecode verifier). The
JVM loads the bytecode through a class loader. The
bytecode is usually verified but not for classes which
are deemed “trusted” such as classes in the packages
“java.*”. At runtime, the bytecode of a Java method is
either executed with the template engine, the C1 engine
or the C2 engine. The C1 and C2 engines transform and
optimize the bytecode and execute the resulting code.
Which engine is chosen depends on the number of times
the method has already been executed. The appropriate
place to instrument the bytecode is thus within the class
loader. Indeed, this is where the virtual machine loads a
class and creates an internal representation of the class’

1 a l o a d 0
2 . . .
3 re turn
4 . . .
5 re turn

1 a l o a d 0
2 a c o n s t 1
3 p u t f i e l d a l l o w i n c o n s t r u c t o r = 1
4 a l o a d 0
5 . . .
6 goto n e w l a b e l
7 . . .
8 goto n e w l a b e l
9 n e w l a b e l :

10 a l o a d 0
11 a c o n s t 1
12 p u t f i e l d b y p a s s c h e c k = 1
13 a l o a d 0
14 a c o n s t 0
15 p u t f i e l d a l l o w i n c o n s t r u c t o r = 0

Figure 7: Constructor Transformation (pseudo assembly
code). The original constructor code is shown on the left.
Transformed or additional code has a gray background
color.

bytecode. Since every bytecode that is loaded by the
JVM has to go through the class loader, we instrument
the bytecode there.

4.2 Instrumenting Code in the JVM
Naively instrumenting existing bytecode may result in
broken bytecode. Indeed, the instrumented bytecode
must verify:

• that branching instruction offsets are still pointing
to the right instruction,

• that try/catch blocks and handlers are still consistent

• that stack map frames 4 are appropriate and still
consistent

Our approach is to add one field, is initialized to the
Ob ject class and to modify the bytecode of the construc-
tors of the Ob ject class to initialize the field to true.
When a method is called, it could thus first check that
the field is correctly initialized. If it is, the method is
executed normally. Otherwise, is means that the object
on which the method is called has not been correctly ini-
tialized. The method does not execute and the program
stops, for instance by throwing an exception.

Object Constructors Instrumentation Only con-
structors in java.lang.Object are instrumented. The
modifications are presented in Figure 7. First, code is
prepended to the constructor bytecode to set the field
allow in constructor to true (lines 1 to 3). This al-
lows the constructor to call methods even if it is not
fully initialized yet. Then, every return instruction is
changed to a goto instruction to branch to the appended

4structures to help type checking the bytecode [7]
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1 a l o a d 0
2 . . .
3 re turn
4 . . .
5 re turn

1 a l o a d 0
2 i n v o k e v i r t u a l i s I n i t ( )
3 i f n e n e w l a b e l
4 new S e c u r i t y E x c e p t i o n
5 a th row
6 n e w l a b e l :
7 a l o a d 0
8 . . .
9 re turn

10 . . .
11 re turn

Figure 8: Method Transformation (pseudo assembly
code). The original method code is shown on the left.
Transformed or additional code has a gray background
color.

code. The appended code (lines 9 to 15) sets back the
field allow in constructor to f alse and sets the field
is initialized to true indicating that the object has been
correctly initialized.

Method Instrumentation The bytecode transforma-
tion for methods is illustrated Figure 8. Code is
prepended to the method bytecode to check if the con-
structor has been properly initialized (lines 1 and 2). If it
is the case, the method is executed normally (lines 3 and
6). Otherwise, the method throws a security exception
(lines 4 and 5).

4.3 Implementation of MUSTI

We use the Java virtual machine from OpenJDK 8 update
144 branch 01 (see Appendix A for more details).

We modify method.cpp to add code which modifies
the bytecode of existing methods. We rely on code al-
ready present in the JVM file relocator.cpp to in-
strument the bytecode of methods. In theory, we mod-
ify classFileParser.cpp to add code to instrument
the constructors of the java.lang.Object class. In
practice, as explained in the next paragraph, we mod-
ify classFileParser.cpp to instrument all construc-
tors of all classes extending java.lang.Object. Over-
all, the new code accounts for about 2000 lines of C++.

While implementing our solution we faced one ma-
jor challenge which is that the java.lang.Object

class cannot be easily modified. According to multiple
sources 5 and our experience, adding a field or a method
to this class would require heavy modification of the Java
virtual machine source code since numerous parameters
for this class are hardcoded throughout the source code
of the virtual machine. We solved this by modifying all
classes which immediately extend java.lang.Object.

5https://stackoverflow.com/add-a-field-to-java-lang-object
https://stackoverflow.com/instrumenting-array-via-java-lang-object

5 Evaluation

In this section, we answer the following research ques-
tions:

• RQ1: can MUSTI prevent attacks based on unitial-
ized instance vulnerabilities?

• RQ2: what is the runtime overhead of MUSTI?

• RQ3: what is the memory overhead?

• RQ4: how many constructors are vulnerable?

All the experiments ware performed on a machine
with 32Gb of RAM and an Intel Core i7-6700HQ CPU
@ 2.60GHz featuring 8 processors each having 8 cores.

5.1 RQ1: Preventing Attacks
The main goal of MUSTI is to prevent attacks based
on invalid object initialization. We reverse engineered
the patch of vulnerability CVE-2017-3289 6 to cre-
ate an exploit. This exploit features unprivileged code
which leverages the vulnerability to create an instance of
java.lang.ClassLoader. How the vulnerability has
been reversed and the exploit created is detailed in Ap-
pendix B. Note that all publicly known invalid object ini-
tialization vulnerabilities are located within the code of
the bytecode verifier.

The exploit has no permission and can nonetheless
create an instance of java.lang.ClassLoader on a
vulnerable version of the Java virtual machine. However,
in our modified version MUSTI, the added bytecode in
the java.lang.ClassLoader constructor detects that
the constructor call chain has been broken since the field
is initialized is still set to f alse. It thus successfully
stops the program before it can leverage the vulnerability.

MUSTI is able to successfully prevent attacks lever-
aging invalid object initialization vulnerabilities
present within the bytecode verifier.

5.2 RQ2: Overhead of MUSTI

We evaluate MUSTI on DaCapo [13], a benchmark
suite intended as a tool for Java benchmarking, as well
as on two real world Java programs: Soot [22] and
JavaML [12]. For every target test suite or program, we
run the program 50 times in a row in the same Java virtual
machine. We do this to be able to stabilize the running
time of the Java virtual machine. Indeed, the JVM is
quite a complex software which requires to load classes
used in the target program and which comes with many
optiminzations to improve the running time. In order to

6the vulnerability lies at the bytecode verifier level within the JVM

6
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evaluate a target program in its best optimized version
and to remove noise related to class loading and code
optimization, we run it 50 times and use the last 10 runs
as representative of the best optimized version of the pro-
gram. Every run with 50 iterations is repeated 10 times.
The final version uses the mean running time of every
iteration.

5.2.1 DaCapo Benchmark

The DaCapo benchmark is not maintained anymore.
Therefore, some of the benchmark’s test suites are not
working against Java 8. Thus, we only rely on a sub-
set of all the available test suites, namely luindex,
lusearch, pmd and xalan. The first two are based on
Apache Lucene 7: luindex uses lucene to indexes a
set of text documents such as the works of Shakespeare,
while lusearch uses lucene to do a text search of key-
words over text documents. Regarding the two other test
suites, pmd analyzes a set of Java classes to detect poten-
tial problems and xalan transforms Xml documents into
Html documents.

We run all the test suites on both the original JVM,
orig, and the modified JVM, MUSTI. We use three dif-
ferent versions of the modified JVM. In the first version,
naive, all methods of all classes are instrumented. In
the second version, opti1, only methods of classes which
are public and non-final are instrumented. In the third
version, opti2, only methods of classes checking for a
permission in one of their constructors are instrumented.
How the list of such constructors has been computed is
the topic of RQ4 in Section 5.4.

The results are shown in Figure 9 to 12. Figure 9 rep-
resents the results of the experiments for luindex. The
first graph compares the original JVM, orig, (crosses)
with the naive modified JVM, naive (circles). The sec-
ond graph compares orig with opti1 while the third one
compares orig with opti2. The overhead is indicated in
the three graphs with triangles. Figure 10 represents the
result for lusearch, Figure 11 for pmd and Figure 12 for
xalan.

The first observation is that the overhead (taken on
the last 10 runs) decreases from naive to opti1 to opti2.
For xalan, for instance, it goes from 5.17% to 4.44% to
2.82%. For pmd it goes from 11% to 8.06% to -0.35%.
The last overhead is negative meaning that the modified
JVM ran faster than the original one. The explanation is
that since the run times of orig and modi f are very close,
it may happen that the average of modi f is faster than the
average of orig, hence the negative value close to 0%.

The second observation, is that for the first few runs,
modi f has a very high overhead compared to orig. This
is explained by the fact that in the modified JVM, the

7http://lucene.apache.org
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Figure 9: luindex naive (up), opti1 (middle) and opti2
(down)

bytecode of a huge number of methods is modified which
takes time. This is one of the reason, we execute 50
runs of the same program in the same virtual machine
to get rid of the class loading impact on the overall run-
ning time of the program. This phenomenon is specially
interesting in the case of xalan. After iteration 18, the
overhead goes from more than 150% down to the range
0-5%. This is not only explained by the method bytecode
modification but also by the numerous optimizations the
virtual machine performs on the bytecode. These modi-
fication are highly dependent on the number of execution
of the method in question, i.e. the more a method is ex-
ecuted, the more the JVM tries to optimize its code. It is
likely that for the case of xalan a huge batch of method
is used frequently and ends up being highly optimized at
the 18th iteration.

The third observation is that the overhead of opti2 is
close to zero. This means that the modification of the
JVM to detect invalid object initialization has almost no
impact on the runtime of the program.

The fourth observation is that there are bursts of the
overhead. This is especially noticeable in Figure 9. We
assume this is caused by the garbage collector which
takes time to remove all the unused objects and thus in-
creases the running time for some iterations. The nega-
tive effect on the overhead can be observed both for the
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Figure 10: lusearch naive (up), opti1 (middle) and
opti2 (down)

original VM and for MUSTI. Figure 14 illustrates this
behavior. At iteration 17, the garbage collector runs for
the original VM causing the overhead to be negative. At
iteration 19, the garbage collector runs for MUSTI, caus-
ing the overhead to be way higher.

The evaluation on the DaCapo benchmark indicates
that impact of MUSTI on the running time is low
and is in the range 0-3%.

5.2.2 Real Java Software

We also evaluate MUSTI on two real Java programs:
Soot [22] a program to analyze and optimize Java byte-
code and Java-ML [12] a machine learning library. As
for the DaCapo benchmark, we run each program 50
times in the same virtual machine to remove noise from
class loading and code optimization. We run Soot to
transform the 7Mib Dalvik bytecode of one Android ap-
plication to the internal representation of Soot called Jim-
ple and to output this representation to the file-system.
We run Java-ML on the tutorial examples available in the
source code: random forest, kmeans, store data, Weka
classifier, ARFF loader, Weka clusterer, sampling, fea-
ture scoring, feature ranking, feature subset selection, en-
semble feature selection, sparse instance, dataset, dense
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Figure 11: pmd naive (up), opti1 (middle) and opti2
(down)
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Figure 12: xalan naive (up), opti1 (middle) and opti2
(down)
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Figure 13: Soot opti2
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Figure 14: JavaML opti2

instance, lib SVM, self optimizing lib SVM, KNN, naive
Bayes, cross validation, k-dependent Bayes and entropy
partitioning. We only run Soot and Java-ML with opti2,
the version of the modified JVM which yielded the best
results (the lower overheads) for DaCapo. The precise
versions of the tools and the Android application are
listed in Appendix A.

Figure 13 represents the results for Soot and Figure 14
for Java-ML. The overhead average for the last ten runs
is -0.9% for Soot and 0.35 for JavaML.

The impact of MUSTI on the running time of real
world Java program is low and less than 1%.

5.3 RQ3: Memory Overhead
To evaluate the memory overhead we analyze the classes
shipped with Java 8 update 144 branch 1. These
classes are the basic Java runtime classes such as
java.lang.String which are present on any Java vir-
tual machine and other classes such as the ones in pack-
ages sun.*, com.sun.* or javax.*. The total num-
ber of classes is 26,610. They represent approximately
160Mib.

We developed a program based on Soot to count the
total number of instructions in all methods of all classes.
For every constructor in a non-final non-private class, we
add 3 instructions for every return instructions as well
as 7 instructions representing the code we append to the
constructors. For every non final non private method, we

add 8 instructions representing the code we prepend to
the methods.

In total there are 199,499 concrete methods represent-
ing 3,927,726 instructions. The overhead for construc-
tors represents 213,395 instructions. The overhead for
the methods represents 997,576 instructions. The to-
tal overhead for method instructions is 30.83%. If we
assume that every instruction makes 10 bytes (an over-
approximation), the memory necessary to represent the
bytecode increases from 37 Mib to 49 Mib. The total
size of all classes (including not only the bytecode of
methods, but also the constant pools, the attributes, etc.)
increases from 160 Mib to 172 Mib which represents an
overhead of 7.5%.

The impact of MUSTI on the memory is low. New
instructions add – at the maximum – an overhead
of 7.5% which, in typical Java environments, rep-
resents only a few dozens of Mib.

5.4 RQ4: Vulnerable Code

Through this research question we aim at measuring
the attack surface of the Java Class Library (JCL) for
the invalid object initialization vulnerability. We search
for vulnerable constructor methods and count them. To
evaluate the number of vulnerable constructors, we de-
veloped a program based on Soot to statically ana-
lyze the constructors and extract the permissions they
check. The analysis first constructs a CHA-based [17]
call graph starting from the constructors’ methods. Then,
it searches the call graph down to a depth of 6 8 for meth-
ods M checking for a permission (those are well defined
in the Java documentation). For every M, it performs a
context-sensitive backward analysis to extract the string
representing the permission which is checked.

In total, we identified 938 constructors checking
for 36 different kinds of permissions in 353 classes
(1.33% of the 26,610 classes of the JDK). Notable
vulnerable constructors are found in classes such as
java.lang.ClassLoader (see Figure 1) where a per-
mission is checked at a depth of 3, or in class
java.net.DatagramSocket where a permission is
checked at depth 4.

The number of classes actually checking for a per-
mission in a constructor is small (1.33%) compared
to the total number of classes in the JDK. This in-
formation can be used to optimize the number of
classes and methods to instrument to reduce the
runtime and memory overheads.

8we assume permissions are checked early in the constructor
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6 Limitations

6.1 Bytecode Length Limit

The JVM restricts the bytecode size for a method to be
less than 65,236 bytes [9]. In our experiments, we have
never seen a method with a bytecode size greater than
25,744 bytes 9. An attacker could craft such a method to
prevent our approach from updating the bytecode. How-
ever, such a huge size for a method can be trivially de-
tected and trigger a red flag to stop a potential attack.
Furthermore, while our current implementation updates
the bytecode, it could be updated to append native code
when the bytecode is interpreted. This would make this
problem of the bytecode size insignificant.

6.2 Field and Method Number Limit

The JVM restricts the number of methods to 65,535 and
the number of fields to 65,535 [6]. Again, we have never
seen classes with more than 1,260 methods 10 and 360
fields 11. An attacker could craft such a class to prevent
our approach from adding new fields. Nevertheless, this
can be detected at runtime.

6.3 Other Attack Vectors

Our approach was designed to prevent invalid object ini-
tialization vulnerabilities. Other attacks based on buffer
overflows, type confusion, confused deputy or other vul-
nerabilities which could also compromize the Java vir-
tual machine sandbox are out of scope of this paper.

7 Discussion

In this section we first discuss two other approaches to
prevent the vulnerability in Section 7.1. We then demon-
strate that bypassing our mitigation technique would re-
quire a vulnerability more powerful than a invalid object
initialization vulnerability in Section 7.2.

7.1 Other Approaches

There are other approaches than the one described in this
paper to prevent the exploitation of invalid object initial-
ization vulnerabilities. We discuss them here and high-
light their advantages and drawbacks.

9sun.awt.X11.XKeysym: void <clinit>()
10com.sun.corba.se.impl.logging.ORBUtilSystemException
11com.sun.tools.classfile.Opcode

7.1.1 Hard-code Checks in Source Code

One approach which has already been partially imple-
mented in the JCL is to explicitly hard-code checks in
Java classes. While it prevents the vulnerability for bee-
ing exploited in the updated class, the approach does not
guarantee that all potentially vulnerable classes are pro-
tected. Furthermore, this approach adds noise to the code
which makes it harder to read the code and to maintain
it.

7.1.2 Patch the bytecode offline

The bytecode could be patched offline. That is all .class
files could be modified to add code that will check for
broken constructor chains. While this may reduce the
overhead of loading classes, it also comes with limita-
tions. First, only the bytecode of known classes can
be modified and not the bytecode of classes created and
loaded at runtime and loaded from the network. Second,
the distribution of such code may break other programs
which were not patched to support vulnerability check.
Implementing the check directly in the JVM makes sure
that the virtual machine state is consistent, i.e. that all
classes are patched.

7.2 On the Possibility of Bypassing MUSTI

In this section, we demonstrate that bypassing MUSTI
would require the use of a vulnerability that can bypass
the Java sandbox. That is to say, our approach works
unless there is a critical vulnerability which would allow
the attacker to bypass all security checks of the sandbox
including MUSTI.

7.2.1 Private Field Bypass

An analyst could try to set the field is initialized of an
Ob ject instance to true even if the object has not been
correctly initialized. If the analyst can do that, he has a
primitive to break the encapsulation of private fields of
Java objects. He can thus modify the private static

volatile SecurityManager security private field
of the System class to disable all permission checks.
He can thus bypass all restrictions of the Java sandbox,
which is absurd.

7.2.2 Removing Permission Checks

An analyst could try to remove permission checks from
system classes. If the analyst can do that it means he
has a primitive to modify the bytecode fo system classes
which is a primitive more powerful than an exploit for
an invalid object initialization. Thus, the analyst could
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define code in system classes to bypass all restrictions of
the Java sandbox including MUSTI, which is absurd.

8 Related Work

To the best of our knowledge, this work is the first pre-
senting an approach to prevent invalid object initializa-
tion vulnerabilities.

Oh et al. [23] analyze CVE-2012-0507, a type confu-
sion vulnerability, and explain how it has been used by
malware.

Auriemma et al. [18] present techniques to bypass de-
tection of known Java exploits by security tools. Tech-
niques include serialization, splitting the exploit in mul-
tiple parts or leveraging multiple JVM.

Holzinger et al. [21] have studied public Java ex-
ploits. Their findings highlight that exploits leverage,
among others, the following weaknesses of the Java plat-
form: unauthorized use of restricted classes, arbitrary
class loading and caller sensitivity. The paper presents
the most vulnerable parts of Java but does not give any
solution for preventing attacks based on the vulnerabili-
ties.

Wang et al. [25] discuss simple techniques to detect
Java exploits. One technique consists in disabling the
security manager and run the suspicious Java code while
checking if it tries to disable the security manager. If it
does, there is a very high probability of it being a Java
exploit. While most proof-of-concepts aim at disabling
the security manager, not all practical attack actully need
a security manager set to null.

Coker et al. [15] evaluates how the security manager
is used in benign applications. Based on this knowledge,
they devise two rules to prevent most of the exploits from
working: the security manager cannot be changed if it
has been set by the application and a class may not di-
rectly load a more privileged class if a security manager
is set. This does not prevent malicious code from bypass-
ing permission checks in constructors.

Holzinger et al. [20] presented an approach to remove
shorcuts in stack-based access controls. While this im-
proves the overall security of the JCL by making it much
harder to have confused deputy attacks, it does not pre-
vent attacks based on the vulnerability presented in this
paper.

9 Conclusion

In this paper we have presented an approach, MUSTI,
to prevent the exploitation of invalid object initialization
vulnerabilities. From a security point of view it is essen-
tial to protect against this kind of critical vulnerability

since it may allow to completely bypass the Java sand-
box. We have evaluated our approach against an exploit
leveraging a generic invalid object initialization vulnera-
bility: it successfully prevents the exploits from working.
The runtime and memory overhead have been evaluated
using a Java benchmark and real world Java software.
Our approach has a runtime overhead less than 5% and a
memory overhead less than a dozen Mib which makes it
practical.
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A Java Versions

For the sake of reproductibility, we list below the version
of the programs/libraries/applications/files we used for
our implementation and for the experiments.

• openjdk-8 8u144-b01-1.debian.tar.xz
f0f94bd01397abdd966e64918bf3b350fc8c08b020-
eeeaf386d2dc76ff8554a7 (sha256)

• openjdk-8 8u144-b01.orig.tar.gz
e816e1a8e2fee6ce21335cd8159805bde8e04be1c5-
8214037cf39950fba991e5 (sha256)

• Soot commit
cdef52ed39e849565e60609328017fe4885bd3d7

• Java-ML version 0.1.7

• DaCapo version 9.12

• Android application
a02fe87870ece6e4772db1445670cfc5f06cf7cd5f-
646c457dac4eccb787e6be (sha256)

B Reverse of CVE-2017-3289

B.1 CVE-2017-3289
The description of the CVE indicates that ”Successful
attacks of this vulnerability can result in takeover of Java
SE, Java SE Embedded.” [5]. This means it might be
possible to exploit the vulnerability to escape the Java
sandbox.

Redhat’s bugzilla indicates that ”An insecure class
construction flaw, related to the incorrect handling of
exception stack frames, was found in the Hotspot com-
ponent of OpenJDK. An untrusted Java application or
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applet could use this flaw to bypass Java sandbox restric-
tions.” [1]. This informs the analyst that (1) the vulnera-
bility lies in C/C++ code (Hotspot is the name of the Java
VM) and that (2) the vulnerability is related to an illegal
class construction and to exception stack frames. Infor-
mation (2) indicates that the vulnerability is probably in
the C/C++ code checking the validity of the bytecode.
The page also links at the OpenJDK’s patch for this vul-
nerability.

The OpenJDK’s patch “8167104: Additional class
construction refinements” fixing the vulnerability is
available online [3]. Five C++ files are patched: class-
file/verifier.cpp, the class responsible for veri-
fying the structure and the validity of a class file,
classfile/stackMapTable.{cpp, hpp}, the files
handling the stack map table, and classfile/stack-

MapFrame.{cpp, hpp}, the files representing the stack
map frames. In the following paragraph we first briefly
describe what stack map frames and stack map table are
and what is their use in bytecode verification. Next,
we look at the patch to understand the vulnerability and
present a proof of concept.

B.1.1 Bytecode Verification

Before loading a class, the JVM checks that all meth-
ods are valid. For instance, it checks that jumps land on
valid instructions and not in the middle of an instruction
and checks that the control flow ends with a return in-
struction. Furthermore, it also checks that instructions
operate on valid types. Not correctly checking validity
of types could lead to type confusion vulnerabilities. In
Java, such vulnerabilities allow to bypass the sandbox.
Type checking is thus a critical verification step.

Historically, to check type validity, the JVM relied on
a data flow analysis to compute a fix point. This analy-
sis may require to perform multiple pass over the same
paths. As this is time consuming, and may slow down the
class loading process, a new approach has been devel-
oped to perform the type checking in linear time where
each path is only checked once. To achieve that, meta-
information called stack map frames have been added
along the bytecode. In brief, stack map frames describe
the possible types at each branch targets. Stack map
frames are stored in a structure called the stack map ta-
ble [8].

B.1.2 Looking at the Patch

By looking at the diff, one notices that function Stack-

MapFrame::has flag match exception has been re-
moved and a condition, which we will refer to
as C1, has been updated by removing the call
to has flag match exception. Also, methods

match stackmap and is assignable to have now
one less parameter: bool handler has been removed.
This parameter handler is set to true if the verifier is
currently checking an exception handler.

Condition C1 is illustrated in Figure 15. This con-
dition is within function is assignable to which
checks if the current stack map frame is assignable
to the target stack map frame, passed as a parame-
ter to the function. Before the patch, the condition to
return true was “match flags || is exception handler
&& has flag match exception(target)”. In English, this
means that flags for the current stack map frame and the
target stack map frame are the same or that the current
instruction is in an exception handler and that function
has flag match exception returns true. Note that
there exist only one kind of flag called FLAG THIS UN-

INIT. If this UNINIT flag is true, it indicates that the
object referenced by “this” is uninitialized, i.e., its con-
structor has not yet been called.

After the patch, the condition becomes “match flags”.
This means that, in the vulnerable version, there is proba-
bly a way to construct bytecode for which “match flags”
is false (i.e., “this” has the uninitialized flag in the
current frame but not in the target frame), but for
which is exception handler is true (the current in-
struction is in an exception handler) and for which
has flag match exception(target) returns true.
But when does this function return true?

Function has flag match exception is represented
in Figure 16. In order for this function to return true all
the following conditions must pass: (1) the maximum
number of local variables and the maximum size of the
stack must be the same for the current frame and the tar-
get frame (lines 4-5); (2) the current frame must have the
UNINIT flag set to true (line 10); and (3) uninitialized
objects are not used in the target frame (lines 14-24).

Figure 17 illustrates bytecode that satisfies the three
conditions. (1) The maximum number of locals and the
maximum stack size can be set to 2. (2) The current
frame has UNINIT set to true (at line 7). (3) Uninitialized
locals are not used in the target of the athrow instruction
(line 11) since the first elements of the local is initialized
to TOP. Note that the code has be within a try/catch block
to have is exception handler set to true in function
is assignable to. Moreover, notice that the bytecode
is within a constructor (identified by the method name
<init> in the bytecode). This is mandatory in order to
have FLAG THIS UNINIT set to true.

Uninitialized “this”. So What? At this point, the an-
alyst is able to craft bytecode to return an uninitialized
object in a constructor he controls. At first sight, it seems
that the vulnerability does not bring anything to the an-
alyst. However, looking closer we notice that this spe-
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1 − boo l m a t c h f l a g s = ( f l a g s | t a r g e t−>f l a g s ( ) ) ==
t a r g e t−>f l a g s ( ) ;

2 − i f ( m a t c h f l a g s | | i s e x c e p t i o n h a n d l e r &&
h a s f l a g m a t c h e x c e p t i o n ( t a r g e t ) ) {

3 + i f ( ( f l a g s | t a r g e t−>f l a g s ( ) ) == t a r g e t−>f l a g s ( ) )
{

4 re turn true ;
5 }

Figure 15: Patch for the vulnerability in the bytecode
verifier.

1 bool StackMapFrame : : h a s f l a g m a t c h e x c e p t i o n (
2 c o n s t StackMapFrame∗ t a r g e t ) c o n s t {
3
4 a s s e r t ( m a x l o c a l s ( ) == t a r g e t−>m a x l o c a l s ( ) &&
5 s t a c k s i z e ( ) == t a r g e t−>s t a c k s i z e ( ) , ”

StackMap s i z e s must match ” ) ;
6
7 V e r i f i c a t i o n T y p e t o p = V e r i f i c a t i o n T y p e : : t o p t y p e ( )

;
8 V e r i f i c a t i o n T y p e t h i s t y p e = v e r i f i e r ( )−>

c u r r e n t t y p e ( ) ;
9

10 i f ( ! f l a g t h i s u n i n i t ( ) | | t a r g e t−>f l a g s ( ) != 0 ) {
11 re turn f a l s e ;
12 }
13
14 f o r ( i n t i = 0 ; i < t a r g e t−>l o c a l s s i z e ( ) ; ++ i ) {
15 i f ( l o c a l s ( ) [ i ] == t h i s t y p e && t a r g e t−>l o c a l s ( ) [

i ] != t o p ) {
16 re turn f a l s e ;
17 }
18 }
19
20 f o r ( i n t i = 0 ; i < t a r g e t−>s t a c k s i z e ( ) ; ++ i ) {
21 i f ( s t a c k ( ) [ i ] == t h i s t y p e && t a r g e t−>s t a c k ( ) [ i ]

!= t o p ) {
22 re turn f a l s e ;
23 }
24 }
25
26 re turn true ;
27 }

Figure 16: Function has flag match exception.

cially crafted bytecode could also be used in an analyst
controlled constructor of a subclass to prevent the call
to super.<init>(), the constructor of the super class.
Since the super class could potentially be a class from
the JCL, the vulnerability opens new perspectives to the
analyst. The vulnerability allows the analyst to instan-
tiate public classes for which the constructor checks a
permission or for which the constructor is private.

B.2 Affected Versions

To our surprise, this vulnerability affects more than 40
different public releases. All Java 7 releases from update
0 to update 80 are affected. All Java 8 releases from
update 5 to update 112 are also affected. Java 6 is not
affected.

1 <i n i t >()
2 t r y s t a r t :
3 new ” j a v a / l a n g / Throwable ”
4 dup
5 i n v o k e s p e c i a l ” Throwable .< i n i t >() ”
6 athrow
7 / / l o c a l s [ 0 ] = UNINITIALIZED THIS
8 / / s t a c k [ 0 ] = ” j a v a / l a n g / Throwable ”
9 t r y e n d :

10 h a n d l e r :
11 / / l o c a l s [ 0 ] = TOP
12 / / s t a c k [ 0 ] = ” j a v a / l a n g / Throwable ”
13 re turn

Figure 17: Proof-of-Concept for exploiting the uninitial-
ized instance vulnerability in the bytecode verifier. In
this example the constructor returns an instance that is
still flagged with UNINITIALIZED THIS.

B.3 Origin of the Vulnerability

By looking at the difference between the source code of
the bytecode verifier of Java 6 update 43 and Java 7 up-
date 0, we notice that the main part of the diff corre-
sponds to the inverse of the patch presented in Figure 15.
This means that the condition under which a stack frame
is assignable to a target stack frame within an exception
handler in a constructor has been weakened. Comments
in the diff indicate that this new code has been added
via request 7020118 [4]. This request asked to update
the code of the bytecode verifier in such a way that Net-
Beans’ profiler can generate handlers to cover the entire
code of a constructor.
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