
Dexpler: Converting Android Dalvik Bytecode
to Jimple for Static Analysis with Soot

Alexandre Bartel Jacques Klein
Yves Le Traon

University of Luxembourg - SnT, Luxembourg
firstname.lastname@uni.lu

Martin Monperrus
University of Lille - INRIA, France

martin.monperrus@univ.lille1.fr

Abstract
This paper introduces Dexpler, a software package which
converts Dalvik bytecode to Jimple. Dexpler is built on top
of Dedexer and Soot. As Jimple is Soot’s main internal rep-
resentation of code, the Dalvik bytecode can be manipu-
lated with any Jimple based tool, for instance for performing
point-to or flow analysis.

Categories and Subject Descriptors D.3.4 [Software]:
Programming Languages—Code generation

General Terms Code Generation

Keywords Dalvik Bytecode, Android, Soot, Jimple, Static
Analysis

1. Introduction
Android applications are mainly written in Java. However,
they are not distributed as Java bytecode but rather as Dalvik
bytecode. Indeed, the original Java code is first compiled into
Java bytecode which is then transformed into Dalvik byte-
code by the dx tool1. Dalvik bytecode is register based and
optimized to run on devices where memory and processing
power are scarce.

Analyzing Android applications with Java static analysis
tools means either that the Java source code or the Java byte-
code of the Android application must be available. Most of
the time, Android applications developers do not distribute
the source code of their applications. One must then analyze
the bytecode, for instance for malware detection.

1 dx is part of the Android SDK available at http://developer.

android.com/sdk/index.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SOAP’12 June 14, Beijing, China.
Copyright c© 2012 ACM ISBN 978-1-4503-1490-9/12/06. . . $10.00

Thus, to analyse Android applications, one is forced to
use a Dalvik disassembler such as Smali [2] or Androguard
[5]. The problem with disassemblers is that they generaly
use their own representation of the bytecode which prevents
them to use existing tools.

Another possibility is to first convert Dalvik bytecode to
Java bytecode using Ded [7], Dex2jar [16] or undx [17] and
then use Java tailored static analysis tools such as Soot [20],
BCEL [4] or WALA [9]. Tools which generate Java bytecode
can leverage existing Java bytecode analyzers. However, the
conversion from Dalvik to Java bytecode could be avoided
by directly converting Dalvik bytecode to the internal repre-
sentation of a tool.

We introduce Dexpler, a Soot modification which allows
Soot to directly read Dalvik bytecode and perform analysis
and/or transformation on it’s internal Jimple representation.
Using this method eliminates the intermediate Dalvik to Java
bytecode conversion step and enables to use a faster and
simpler tool chain for static analysis. Dexpler only uses a
disassembler and then does the rest of the work itself or by
using Soot.

The contributions of this paper are the following:

• we describe a Dalvik to Jimple converter tool
• we provide a comprehensive table which maps Dalvik

bytecode instructions to Jimple statements

The reminder of this paper is organized as follows. In
Section 2 we explain what Soot is, and how it has been mod-
ified to handle Dalvik bytecode. Section 3 is an overview of
the Dalvik bytecode. In Section 4 we propose a Soot mod-
ification called Dexpler which enables Soot to read Dalvik
bytecode. In Section 5 we evaluate Dexpler on test cases
and on one Android application, present and discuss the re-
sults. Section 6 explains the current limitation of our tool.
We present the related work in Section 7. Finally we con-
clude the paper and discuss open research challenges in Sec-
tion 8.

2. Soot
In this Section we give a brief overview of Soot and then
describe how we incorporate Dexpler in Soot.

2.1 Soot Overview
Soot [11, 20] was created as a Java compiler testbed at
McGill University. It has evolved to become a Java static
analysis and transformation tool.

Soot can be used as a code analyzer to, among others,
check that certain properties hold [22] or guarantee correct-
ness of programs [8].

Multiple tools based on Soot have been developed to
perform transformations such as translation of Java to C
[21], instrumentation of Java programs [23], obfuscator for
Java [18], software watermarking [3], ...2.

Soot accepts Java source code, Java bytecode and Jim-
ple source code as input files. Whatever the input format,
it is converted into Soot’s internal representation: Jimple.
Java sIMPLE, is a stack-less, three address representation
which features only 15 instructions. Any method code can
be viewed as a graph of Jimple statements associated with a
list of Jimple local variables.

2.2 From Java Bytecode to Jimple
We now describe how Soot handles Java bytecode classes.

In a typical case, Soot is launched by specifying the tar-
get directory as a parameter. This directory contains the
code of the program to analyze, called Application Code

(only Java bytecode in this example). First, the main()

method of the Main class is executed and calls Scene.load
NecessaryClasses(). This method loads basic Java classes
and then loads specific Application classes by calling
loadClass(). Then, SootResolver.resolveClass()

is called. The resolver calls SourceLocator.getClass

Source() to fetch a reference to a ClassSource, an in-
terface between the file containing the Java bytecode and
Soot. In our case the class source is a CoffiClassSource

because it is the coffi module which handles the conversion
from Java bytecode to Jimple. When the resolver has a refer-
ence to a class source, it calls resolve() on it. This meth-
ods in turn calls soot.coffi.Util.resolveFromClass

File() which creates a SootClass from the corresponding
Java bytecode class. All source fields of Soot class’ methods
are set to refer to a CoffiMethodSource object. This object
is used later to get the Jimple representation of the method.

For instance, if during an analysis with Soot the anal-
ysis code calls SootMethod.getActiveBody() and the
Jimple code of the method was not already generated,
getActiveBody() will call CofficMethodSource.get

Body() to compute Jimple code from the Java bytecode.
The Jimple code representation of the method can then be
analyzed and/or transformed.

2 see https://svn.sable.mcgill.ca/wiki/index.cgi/SootUsers

for a comprehensive list

Header

Constant Pool

Class Definition

Field List

Method List

Data

class 1

...

Header

Constant Pool

Class Definition

Field List

Method List

Data

class N

Header

String Constant Pool

Class Constant Pool

Field Constant Pool

Method Constant Pool

Class 1 Definition

Class 1 Field List

Class 1 Method List

...

Class N Definition

Class N Field List

Class N Method List

Data

dex

(a) Class Files (b) Dex File

Figure 1. Dalvik Dex and Java Class

2.3 Soot and Dalvik
Soot is missing a Dalvik to Jimple transformation module.
We implemented such a module called Dexpler and incorpo-
rated it to Soot using the same structure as Soot’s Java byte-
code parser module, coffi by adding the DalvikClassSource
and DalvikMethodSource classes.

3. Dalvik Bytecode
We present in this Section the structure of a .dex file con-
taining Dalvik classes and Dalvik bytecode.

3.1 Overall Structure
A single Dalvik executable is produced from N Java byte-
code classes through the dx compiler. The resulting Dalvik
bytecode is stored in a .dex file as represented in Figure 1b.

As represented in Figure 1a, there is only a single place
where literal constant values are stored (constant pool) per
Java class. It is heterogeneous since different kind of Objects
are mixed together (ex: Class, MethodRef, Integer, String,
...). A .dex file contains four homogeneous constants pools:
for Strings, Class, Fields and Methods. It is shared by all
the classes. A .dex file contains multiple Class Definitions
each containing one or more Method definition each of those
being linked to Dalvik bytecode instructions present in the
Data section.

3.2 Dalvik Instruction
The Dalvik virtual machine is register based. This means
most instructions must specify the registers which they ma-

int i = 0; 00: const/4 v0, #int 0

Object o = null; 01: const/4 v1, #int 0

(Java) (Dalvik)

Figure 2. Dalvik Representation of null and zero

nipulate. Registers could be specified on 4, 8 or 16 bits de-
pending on the instruction.

There are 237 opcodes present in the Dalvik opcode con-
stant list3. However, 12 odex (optimized dex) instructions
can not be found in Android applications Dalvik bytecode
as they are unsafe instructions generated within the Android
system to optimize Dalvik bytecode. Moreover, 8 instruc-
tions were never found in application code [15]. According
to those numbers, only 217 instructions can be found in An-
droid PacKages (.apk) in practice.

The set of instructions can be divided between instruc-
tions which provide the type of the registers they manipulate
(ex: sub-long v1, v2, v3) and those which do not (ex:
const v0, 0xBEEF). Moreover, there is no distinction be-
tween NULL and 0 which are both represented as 0 (see Fig-
ure 2). As we will see in Section 4, the lack of type and the
NULL representation become problematic when translating
the Dalvik bytecode to Jimple.

4. Dexpler
This section describes Dexpler, the Dalvik to Jimple con-
verter tool. It leverages the dedexer [14] Dalvik bytecode
disassembler and the Soot fast typing Jimple component im-
plementing a type inferrence algorithm [1] for local vari-
ables. We first give a brief overview on dedexer and on how
Dexpler is working in Sections 4.1 and 4.2, respectively.
Then, we detail issues we have to deal with.

4.1 Dedexer
Our tool leverages dedexer a Dalvik bytecode parser and
disassembler which generates Jasmin [10, 12] like text files
containing Dalvik instructions instead of Java instructions.
We generate Jimple classes, methods and statements from
the informations provided by dedexer’s dex file parser.

4.2 Overview
Dalvik bytecode instructions are first mapped to Jimple
statements and registers mapped to Jimple local variables.
The type of local variables is set to UnknownType. Then,
Soot’s Jimple component, fast typing, is applied to infer the
type of the local variables. The third and last step consists
in applying Soot’s Jimple pack jop, which features com-
ponents such as nop eleminitor, to optimize the generated
Jimple code.

3 dalvik/bytecode/Opcodes.java

4.3 Instruction Mapping
Each Dalvik instruction is mapped to a corresponding (or
a group of) Jimple statements. A comprehensive mapping
is represented in Table 1 in Appendix A. Unused opcodes
are marked as ’-’ and odex opcodes as ’odex’. There are
five main groups of instructions: move instructions (0x01 to
0x1C), branch instructions (0x27 to 0x3D), getter and set-
ter instructions (0x44 to 0x6D), method invoke instructions
(0x6E to 0x78) logic and arithmetic instructions (0x7B to
0xE2).

4.4 Type Inference
The type for local variables is inferred using the fast typing
Soot component. However, the inference algorithm some-
time generates an exception and stop because some Dalvik
instructions (such as the constant initialization instructions
0x12 to 0x19) do not provide enough information and thus
confuse the inference engine.

The lack of type is present in the following instructions:

• null initialization instructions (zero or null?)
• initialization instructions (32 bits: integer or float?, 64

bits: long or double?)

Null Initialization Figure 4 illustrates the problem with a
bytecode snippet generated from the Java code of Figure 3.
Register v0 is initialized with 0 at 01. At this point we do
not know if v0 is an integer, a float or a reference to an
object. At 02 we still do not have the answer. We have to
wait until instruction at 04 to known that the type of v0 is
Coordinate. At this point, the Jimple instruction generated
for 01 has to be updated to use NullConstant instead of the
default IntConstant(0). If this is not handled correctly,
the fast typing component generates an exception and stops.

Numeric Constant Initialization Similarly, float constants
initialization cannot be distinguished from int constants ini-
tialization and double constants initialization from long con-
stants initialization. Thus, we go through the graph of Jim-
ple statements to find how constants are used and correct
the initializations Jimple statements when needed. For in-
stance, if a float/int constant (initialized by default to int
in the Jimple statement) is later used in a float addition,
the constant initialization changes from IntConstant(c)

to FloatConstant(Float.intBitsToFloat(c)).

We implemented the algorithm described by Enck et al.
[6]. It is based on algorithms which extract typing informa-
tion for a variable by looking at how it is used in opera-
tions whithin which the type of the operands is knows (ex:
the variable is used as a parameter of a method invocation)
[13, 19]. For each ambiguous register declaration, the algo-
rithm performs a depth first search in the control flow graph
of Jimple statements to find out how the declared local vari-
able dv (registers are mapped to Jimple local variables) is
used. The type of dv is exposed with the following state-

Coordinate newCoord = null;

while (newCoord!=null) {

newCoord = new Coordinate(1,1);

}

if (newCoord == null) {

[...]

}

Figure 3. Illustration of the null init problem.

00: const/4 v1, #int 1

01: const/4 v0, #int 0

02: if-eqz v0, 000a

04: new-instance v0, LCoordinate;

06: invoke {v0, v1, v1}, LCoordinate;.<init>:(II)V

09: goto 0002

0a: if-nez v0, 0013

[...]

13: ...

Figure 4. Resulting Dalvik Bytecode from Figure 3

ments: comparison with a known type, instructions operat-
ing only on specific types (ex: neg-float), non-void return
instructions and method invocation. The search in a branch
of the graph is terminated if either the local variable is reas-
signed (new declaration) or if there is no more statement that
follow the current one (eg: the current statement is a return
or throw statement). When the type information is found it
is forward propagated to all subsequent ambiguous uses be-
tween the target ambiguous declaration of dv and any new
declaration of dv.

4.5 Handling Branches
Dalvik instructions are mapped to Jimple statements. When
parsing Dalvik bytecode, we keep a mapping between byte-
code instructions addresses and Jimple statements. Thus,
when a Dalvik branch instruction is parsed, a Jimple jump
instruction is generated and its target is retrieved by fetching
the Jimple statement mapped to the Dalvik branch instruc-
tion target’s address. We add a nop instruction as the first
instruction of every Jimple methods. This way, if the first
Dalvik instruction is a jump or if the jump’s target corre-
spond to a non-yet generated Jimple statement, we redirect
it to the this nop Jimple instruction. We correct those Jim-
ple jump instructions once the whole Dalvik bytecode of the
method has been processed: at this point we know the tar-
get Jimple statement mapped to the Dalvik jump’s target ad-
dress. The Jimple nop instruction we add is removed during
the Jimple optimization step.

Branching instructions often rely on the result of a
comparison of two registers. Dalvik comparisons between
double or float are explicit and provide typing informa-
tion. However, when a register r is compared with zero
one has to check the type of r. If it is an object, we
change the zero value to null since it is a comparison be-
tween objects. We do this change when the fast typing

component has finished. Indeed, comparisons do not in-
fluence the type inference. For example, the Jimple state-
ment generated from 02 in Figure 4 has to be updated to
use NullConstant instead of IntConstant(0). If this
is not handled correctly the bytecode generated from Jim-
ple statements does not run correctly and generates an
exception similar to the following one: Exception in

thread "main" java.lang.VerifyError: Expecting

to find integer on stack.

Dexpler enables us to transform Dalvik bytecode to Jim-
ple representation. From there, Soot can be used as a static
analysis tool to analyze the code. The next Section evaluates
Dexpler.

5. Evaluation
We evaluate Dexpler using test cases, and one Android ap-
plication: Snake.

5.1 Test Cases
The first step is to generate the Dalvik bytecode for every test
case. The test cases are written in Java then compiled into
Java bytecode using javac and finally converted into Dalvik
bytecode using dx. The second step is to execute Dexpler on
every generated Dalvik bytecode test case. This generates
.jimple and .class files. We then compare the execution
result from of the versions produced from the original Java
bytecode and the Java bytecode produced by Soot from the
Dalvik bytecode. Executions of the .class files give the
correct result.

We wrote test cases for arithmetic operations, branches,
method calls, array initialization, string manipulation, null
and zero usage, exceptions and casts.

Since simple test cases do not reflect a real application we
also evaluated our tool on one Android application.

5.2 Android Application
The snake application is a demonstration application devel-
oped by the Android team to showcase the Android plat-
form.4 It features 11 classes, 39 methods and was written in
550 lines of Java code. The generated Dalvik bytecode takes
14 KiB and contains 884 Dalvik instructions.

From the Dalvik bytecode of the Snake application we
generate Jimple code in one second (duration for the Dalvik
to Jimple conversion only). Then we ask Soot to generate
Java bytecode from the Jimple representation. We convert
the Java bytecode back to Dalvik, repackage an Android
application and launch it on the Android emulator.

The application runs smoothly and the game is working.

5.3 Static Analysis on Snake
We use Soot to generate a call graph of the Snake application
as well as a control flow graph represented in Figure 5 in 14

4 http://developer.android.com/resources/samples/Snake/

index.html

void addRandomApple()

r0 := @this
b0 = 2
r1 = null
z0 = 0

label0:
if z0 != 0 goto label6

r2 = com.example.android.snake.SnakeView.RNG
i1 = com.example.android.snake.SnakeView.mXTileCount
i7 = i1 - b0
i2 = r2.nextInt(i7)
i8 = i2
i3 = i8 + 1
r3 = com.example.android.snake.SnakeView.RNG
i9 = com.example.android.snake.SnakeView.mYTileCount
i10 = i9 - b0
i11 = r3.nextInt(i10)
i12 = i11
i4 = i12 + 1
r11 = new com.example.android.snake.SnakeView$Coordinate
r1 = r11
specialinvoke r11.<init>(r0, i3, i4)
z1 = 0
r4 = r0.mSnakeTrail
i13 = r4.size()
i5 = i13
i6 = 0

label6:
if r1 != null goto label7

label1:
if i6 >= i5 goto label3

r8 = "SnakeView"
r9 = "Somehow ended up with a null newCoord!"
android.util.Log.e(r8, r9)

label7:
r10 = r0.mAppleList
r10.add(r1)
return

r5 = r0.mSnakeTrail
r6 = r5.get(i6)
r7 = r6
r12 = (com.example.android.snake.SnakeView$Coordinate) r7
z2 = r12.equals(r1)
z3 = z2
if z3 == 0 goto label2

label3:
if z1 != 0 goto label5

z1 = 1

label2:
i6 = i6 + 1
goto label1

z4 = 1
z0 = z4

label5:
z5 = 0
z0 = z5
goto label4

label4:
goto label0

Figure 5. Control Flow Graph for addRandomApple

Method Extracted from the Generated Jimple Representa-
tion.

seconds (duration from the launch time of Soot until Soot
has finished). We perform this to check that the generated
call graph and CFG correspond to the original code meaning
that the conversion from Dalvik to Jimple is correct for this
code.

We have successfully tested our prototype tool on test
cases as well as on an Android application.

6. Current Liminations
The current version of Dexpler is able to transform Android
applications such as the Snake game.

However, it does not handle optimized Dalvik (odex)
opcodes.

Moreover, when inferring types for ambiguous declara-
tions the algorithm supposes that the Dalvik bytecode is le-
gal in the sense that it was generated from Java source code
and not hand-crafted by malicious developers. In the later
case assumptions such as ”comparisons always involve vari-
ables with the same type” may not hold anymore and may
make Dexpler to infer wrong types.

7. Related Work
To our knowledge no existing tool directly converts Dalvik
bytecode to Jimple. We either found tools to convert Dalvik
bytecode to Java bytecode or tools to disassemble and/or as-

semble Dalvik bytecode using an intermediate representa-
tion.

Dalvik to Java Bytecode Converter Ded [7] is a Dalvik
bytecode to Java bytecode converter. Once the Java bytecode
is generated, Soot is used to optimize the code. Dex2jar
[16] also generates Java bytecode from Dalvik bytecode
but no not use any external tool to optimize the resulting
Java bytecode. Undx [17] is also a Dalvik to Java bytecode
converter but seems to be unavailable.

We on the other hand do not directly generate Java byte-
code but Jimple code. From there, since the Jimple code is
within Soot, we can generate Java bytecode as well.

Dalvik Assembler/Disassembler Smali [2] or Androguard
[5] can be used to reverse engineer Dalvik bytecode. They
use their own representation of the Dalvik bytecode: they
can not leverage existing analysis tools.

Our tool, use Soot’s internal representation which allows
existing tools to analyze/transform the Dalvik bytecode.

8. Conclusion
We have presented Dexpler a Soot modification with enables
Soot to analyse Dalvik bytecode and thus Android applica-
tions. This tool leverages dedexer for the parsing of Dalvik
dex files and Soot’s fast typing component for the type in-
ference.

Dexpler converts every Dalvik instruction to Jimple. We
are working on improving Dexpler to make it robust to yet
unhandled typing issues. Once this step is done we will look
at the performance of this tool compared to current Java
bytecode generation and analysis tools.

Acknowledgments
This research is supported by the National Research Fund,
Luxembourg.

References
[1] B. Bellamy, P. Avgustinov, O. de Moor, and D. Sereni. Effi-

cient local type inference. In G. E. Harris, editor, OOPSLA,
pages 475–492. ACM, 2008. ISBN 978-1-60558-215-3.

[2] Ben Gruver, et al. Smali: An assembler/disassembler for an-
droid’s dex format. http://code.google.com/p/smali/,
Last accessed: March 20, 2012.

[3] P. Cousot and R. Cousot. An abstract interpretation-based
framework for software watermarking. ACM SIGPLAN No-
tices, 39(1):173–185, Jan. 2004. ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160 (electronic).

[4] M. Dahm. Byte code engineering. In Proceedings of
Java-Informations-Tage (JIT’99), pages 267–277, Düsseldorf,
Deutchland, Sept. 1999. ISBN 3-540-66464-5.

[5] A. Desnos and G. Gueguen. Android: From reversing to
decompilation. In Blackhat, 2011.

[6] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of android application security. In Proceedings of the 20th
USENIX Security Symposium, San Francisco, CA, aug 2011.

[7] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of android application security. In Proc. USENIX Security’
11, pages 21–21, Berkeley, CA, USA, 2011.

[8] L.-Å. Fredlund. Guaranteeing correctness properties of a java
card applet. Electr. Notes Theor. Comput. Sci, 113:217–233,
2005.

[9] IBM. The T.J. Watson Libraries for Analysis (Wala). http:
//wala.sourceforge.net, Last accessed: March 20, 2012.

[10] Jonathan Meyer, Daniel Reynaud. Jasmin. http://jasmin.
sourceforge.net.

[11] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot
framework for Java program analysis: a retrospective. In
Cetus Users and Compiler Infastructure Workshop (CETUS
2011), Oct. 2011. URL http://www.bodden.de/pubs/

lblh11soot.pdf.

[12] J. Meyer and T. Downing. Java Virtual Machine. O’Reilly,
1997.

[13] R. Milner. A theory of type polymorphism in programming.
JCSS, 17:348–375, 1978.

[14] G. Paller. Dedexer. http://dedexer.sourceforge.net/,
Last accessed: March 20, 2012.

[15] G. Paller. Dalvik opcodes. http://pallergabor.uw.

hu/androidblog/dalvik_opcodes.html, Last accessed:
March 20, 2012.

[16] Panxiaobo, et al. Dex2jar: Tools to work with android .dex and
java .class files. http://code.google.com/p/dex2jar/,
Last accessed: March 20, 2012.

[17] M. Schnefeld. Reconstructing dalvik applications. In CONFi-
dence, 2009.

[18] M. Sosonkin, G. Naumovich, and N. Memon. Obfuscation
of design intent in object-oriented applications. In M. Yung,
editor, Proceedings of the 2003 ACM workshop on Digital
rights management (DRM-03), pages 142–153, New York,
Oct. 27 2003. ACM Press.

[19] J. Tiuryn. Type inference problems: A survey. In MFCS, pages
105–120, 1990.

[20] R. Vallée-Rai, L. Hendren, V. Sundaresan, E. G. Patrick Lam,
and P. Co. Soot - a java optimization framework. In Proceed-
ings of CASCON 1999, pages 125–135, 1999.

[21] A. Varma and S. S. Bhattacharyya. Java-through-C com-
pilation: An enabling technology for java in embedded sys-
tems. In DATE, pages 161–167. IEEE Computer Society,
2004. ISBN 0-7695-2085-5.

[22] E. Yahav and G. Ramalingam. Verifying safety properties
using separation and heterogeneous abstractions. ACM SIG-
PLAN Notices, 39(6):25–34, May 2004. ISSN 0362-1340
(print), 1523-2867 (print), 1558-1160 (electronic).

[23] C. Zhang, D. Yan, J. Zhao, Y. Chen, and S. Yang. BPGen: an
automated breakpoint generator for debugging. In J. Kramer,
J. Bishop, P. T. Devanbu, and S. Uchitel, editors, ICSE (2),
pages 271–274. ACM, 2010. ISBN 978-1-60558-719-6.

A. Jimple Code

Table 1: Jimple Code representation of Dalvik Instructions

Opcode Opcode name Jimple Code
0x00 nop nop
0x01 move vx,vy vx = vy
0x02 move/from16 vx,vy vx = vy
0x03 move/16 vx = vy
0x04 move-wide vx = vy
0x05 move-wide/from16 vx,vy vx = vy
0x06 move-wide/16 vx = vy
0x07 move-object vx,vy vx = vy
0x08 move-object/from16 vx,vy vx = vy
0x09 move-object/16 vx = vy
0x0A move-result vx vx = mres
0x0B move-result-wide vx vx = mres
0x0C move-result-object vx vx = mres
0x0D move-exception vx vx = mres
0x0E return-void return
0x0F return vx return vx
0x10 return-wide vx return vx
0x11 return-object vx return vx
0x12 const/4 vx,lit4 vx = lit4
0x13 const/16 vx,lit16 vx = lit16
0x14 const vx, lit32 vx = lit32
0x15 const/high16 v0, lit16 vx = lit16 << 16
0x16 const-wide/16 vx, lit16 vx = lit16
0x17 const-wide/32 vx, lit32 vx = lit32
0x18 const-wide vx, lit64 vx = lit64
0x19 const-wide/high16 vx,lit16 vx = lit16 << 48
0x1A const-string vx,string id vx = string
0x1B const-string-jumbo vx,string vx = string
0x1C const-class vx,type id vx = class ”type”
0x1D monitor-enter vx monitorenter vx
0x1E monitor-exit vx monitorexit vx
0x1F check-cast vx, type id checkcast = (type) vx
0x20 instance-of vx,vy,type id vx = vy instanceof type
0x21 array-length vx,vy vx = length(vy)
0x22 new-instance vx,type vx = new type
0x23 new-array vx,vy,type id vx = new type[vy]
0x24 filled-new-array

{parameters},type id
vx = new array type[size]; vx[0] = e1; ... vx[N] = eN;

0x25 filled-new-array-range
{vx..vy},type id

vx = new array type[size]; vx[0] = e1; ... vx[N] = eN;

0x26 fill-array-data
vx,array data offset

vx[0] = e1; ... vx[N] = eN;

0x27 throw vx throw vx
0x28 goto target goto target
0x29 goto/16 target goto target
0x2A goto/32 target goto target
0x2B packed-switch vx,table switch (vx) { case C1: goto target1; ... case CN: goto targetN; }

Table 1: Jimple Code representation of Dalvik Instructions

Opcode Opcode name Jimple Code
0x2C sparse-switch vx,table switch (vx) { case C1: goto target1; ... case CN: goto targetN; }
0x2D cmpl-float vx = vy cmpl vz
0x2E cmpg-float vx, vy, vz vx = vy cmpg vz
0x2F cmpl-double vx,vy,vz vx = vy cmpl vz
0x30 cmpg-double vx, vy, vz vx = vy cmpg vz
0x31 cmp-long vx, vy, vz vx = vy cmp vz
0x32 if-eq vx,vy,target if (vx == vy) goto target;
0x33 if-ne vx,vy,target if (vx != vy) goto target;
0x34 if-lt vx,vy,target if (vx < vy) goto target;
0x35 if-ge vx, vy,target if (vx >= vy) goto target;
0x36 if-gt vx,vy,target if (vx > vy) goto target;
0x37 if-le vx,vy,target if (vx <= vy) goto target;
0x38 if-eqz vx,target if (vx == 0) goto target;
0x39 if-nez vx,target if (vx != 0) goto target;
0x3A if-ltz vx,target if (vx < 0) goto target;
0x3B if-gez vx,target if (vx >= 0) goto target;
0x3C if-gtz vx,target if (vx > 0) goto target;
0x3D if-lez vx,target if (vx <= 0) goto target;
0x3E unused 3E -
0x3F unused 3F -
0x40 unused 40 -
0x41 unused 41 -
0x42 unused 42 -
0x43 unused 43 -
0x44 aget vx,vy,vz vx = vy[vz]
0x45 aget-wide vx,vy,vz vx = vy[vz]
0x46 aget-object vx,vy,vz vx = vy[vz]
0x47 aget-boolean vx,vy,vz vx = vy[vz]
0x48 aget-byte vx,vy,vz vx = vy[vz]
0x49 aget-char vx, vy,vz vx = vy[vz]
0x4A aget-short vx,vy,vz vx = vy[vz]
0x4B aput vx,vy,vz vy[vz] = vx
0x4C aput-wide vx,vy,vz vy[vz] = vx
0x4D aput-object vx,vy,vz vy[vz] = vx
0x4E aput-boolean vx,vy,vz vy[vz] = vx
0x4F aput-byte vx,vy,vz vy[vz] = vx
0x50 aput-char vx,vy,vz vy[vz] = vx
0x51 aput-short vx,vy,vz vy[vz] = vx
0x52 iget vx, vy, field id vx = field id
0x53 iget-wide vx,vy,field id vx = field id
0x54 iget-object vx,vy,field id vx = field id
0x55 iget-boolean vx,vy,field id vx = field id
0x56 iget-byte vx,vy,field id vx = field id
0x57 iget-char vx,vy,field id vx = field id
0x58 iget-short vx,vy,field id vx = field id
0x59 iput vx,vy, field id field id = vx
0x5A iput-wide vx,vy, field id field id = vx
0x5B iput-object vx,vy,field id field id = vx
0x5C iput-boolean vx,vy, field id field id = vx

Table 1: Jimple Code representation of Dalvik Instructions

Opcode Opcode name Jimple Code
0x5D iput-byte vx,vy,field id field id = vx
0x5E iput-char vx,vy,field id field id = vx
0x5F iput-short vx,vy,field id field id = vx
0x60 sget vx,field id vx = field id
0x61 sget-wide vx, field id vx = field id
0x62 sget-object vx,field id vx = field id
0x63 sget-boolean vx,field id vx = field id
0x64 sget-byte vx,field id vx = field id
0x65 sget-char vx,field id vx = field id
0x66 sget-short vx,field id vx = field id
0x67 sput vx, field id field id = vx
0x68 sput-wide vx, field id field id = vx
0x69 sput-object vx,field id field id = vx
0x6A sput-boolean vx,field id field id = vx
0x6B sput-byte vx,field id field id = vx
0x6C sput-char vx,field id field id = vx
0x6D sput-short vx,field id field id = vx
0x6E invoke-virtual { parameters },

methodtocall
invoke-virtual

0x6F invoke-super
{parameter},methodtocall

invoke-special

0x70 invoke-direct { parameters },
methodtocall

invoke-special

0x71 invoke-static {parameters},
methodtocall

invoke-static

0x72 invoke-interface
{parameters},methodtocall

invoke-interface

0x73 unused 73 -
0x74 invoke-virtual/range

{vx..vy},methodtocall
invoke-virtual

0x75 invoke-super/range invoke-special
0x76 invoke-direct/range

{vx..vy},methodtocall
invoke-special

0x77 invoke-static/range
{vx..vy},methodtocall

invoke-static

0x78 invoke-interface-range invoke-interface
0x79 unused 79 -
0x7A unused 7A -
0x7B neg-int vx,vy vx = 0 -vy
0x7C not-int vx,vy vx = vy ˆ (-1)
0x7D neg-long vx,vy vx = 0 -vy
0x7E not-long vx,vy vx = vy ˆ (-1)
0x7F neg-float vx,vy vx = 0 -vy
0x80 neg-double vx,vy vx = 0 -vy
0x81 int-to-long vx, vy vx = (long) vy
0x82 int-to-float vx, vy vx = (float) vy
0x83 int-to-double vx, vy vx = (double) vy
0x84 long-to-int vx,vy vx = (int) vy
0x85 long-to-float vx, vy vx = (float) vy

Table 1: Jimple Code representation of Dalvik Instructions

Opcode Opcode name Jimple Code
0x86 long-to-double vx, vy vx = (double) vy
0x87 float-to-int vx, vy vx = (int) vy
0x88 float-to-long vx,vy vx = (long) vy
0x89 float-to-double vx, vy vx = (double) vy
0x8A double-to-int vx, vy vx = (int) vy
0x8B double-to-long vx, vy vx = (long) vy
0x8C double-to-float vx, vy vx = (float) vy
0x8D int-to-byte vx,vy vx = (byte) vy
0x8E int-to-char vx,vy vx = (char) vy
0x8F int-to-short vx,vy vx = (short) vy
0x90 add-int vx,vy,vz vx = vy + vz
0x91 sub-int vx,vy,vz vx = vy - vz
0x92 mul-int vx, vy, vz vx = vy * vz
0x93 div-int vx,vy,vz vx = vy / vz
0x94 rem-int vx,vy,vz vx = vy % vz
0x95 and-int vx, vy, vz vx = vy & vz
0x96 or-int vx, vy, vz vx = vy | vz
0x97 xor-int vx, vy, vz vx = vy ˆ vz
0x98 shl-int vx, vy, vz vx = vy << vz
0x99 shr-int vx, vy, vz vx = vy >> vz
0x9A ushr-int vx, vy, vz vx = vy >> vz
0x9B add-long vx, vy, vz vx = vy + vz
0x9C sub-long vx,vy,vz vx = vy - vz
0x9D mul-long vx,vy,vz vx = vy * vz
0x9E div-long vx, vy, vz vx = vy / vz
0x9F rem-long vx,vy,vz vx = vy % vz
0xA0 and-long vx, vy, vz vx = vy & vz
0xA1 or-long vx, vy, vz vx = vy | vz
0xA2 xor-long vx, vy, vz vx = vy ˆ vz
0xA3 shl-long vx, vy, vz vx = vy << vz
0xA4 shr-long vx,vy,vz vx = vy >> vz
0xA5 ushr-long vx, vy, vz vx = vy >> vz
0xA6 add-float vx,vy,vz vx = vy + vz
0xA7 sub-float vx,vy,vz vx = vy - vz
0xA8 mul-float vx, vy, vz vx = vy * vz
0xA9 div-float vx, vy, vz vx = vy / vz
0xAA rem-float vx,vy,vz vx = vy % vz
0xAB add-double vx,vy,vz vx = vy + vz
0xAC sub-double vx,vy,vz vx = vy - vz
0xAD mul-double vx, vy, vz vx = vy * vz
0xAE div-double vx, vy, vz vx = vy / vz
0xAF rem-double vx,vy,vz vx = vy % vz
0xB0 add-int/2addr vx,vy vx = vx + vy
0xB1 sub-int/2addr vx,vy vx = vx - vy
0xB2 mul-int/2addr vx,vy vx = vx * vy
0xB3 div-int/2addr vx,vy vx = vx / vy
0xB4 rem-int/2addr vx,vy vx = vx % vy
0xB5 and-int/2addr vx, vy vx = vx & vy
0xB6 or-int/2addr vx, vy vx = vx | vy

Table 1: Jimple Code representation of Dalvik Instructions

Opcode Opcode name Jimple Code
0xB7 xor-int/2addr vx, vy vx = vx ˆ vy
0xB8 shl-int/2addr vx, vy vx = vx << vy
0xB9 shr-int/2addr vx, vy vx = vx >> vy
0xBA ushr-int/2addr vx, vy vx = vx >> vy
0xBB add-long/2addr vx,vy vx = vx + vy
0xBC sub-long/2addr vx,vy vx = vx - vy
0xBD mul-long/2addr vx,vy vx = vx * vy
0xBE div-long/2addr vx, vy vx = vx / vy
0xBF rem-long/2addr vx,vy vx = vx % vy
0xC0 and-long/2addr vx, vy vx = vx & vy
0xC1 or-long/2addr vx, vy vx = vx | vy
0xC2 xor-long/2addr vx, vy vx = vx ˆ vy
0xC3 shl-long/2addr vx, vy vx = vx << vy
0xC4 shr-long/2addr vx, vy vx = vx >> vy
0xC5 ushr-long/2addr vx, vy vx = vx >> vy
0xC6 add-float/2addr vx,vy vx = vx + vy
0xC7 sub-float/2addr vx,vy vx = vx - vy
0xC8 mul-float/2addr vx, vy vx = vx * vy
0xC9 div-float/2addr vx, vy vx = vx / vy
0xCA rem-float/2addr vx,vy vx = vx % vy
0xCB add-double/2addr vx, vy vx = vx + vy
0xCC sub-double/2addr vx, vy vx = vx - vy
0xCD mul-double/2addr vx, vy vx = vx * vy
0xCE div-double/2addr vx, vy vx = vx / vy
0xCF rem-double/2addr vx,vy vx = vx % vy
0xD0 add-int/lit16 vx,vy,lit16 vx = vy + lit16
0xD1 sub-int/lit16 vx,vy,lit16 vx = vy - lit16
0xD2 mul-int/lit16 vx,vy,lit16 vx = vy * lit16
0xD3 div-int/lit16 vx,vy,lit16 vx = vy / lit16
0xD4 rem-int/lit16 vx,vy,lit16 vx = vy % lit16
0xD5 and-int/lit16 vx,vy,lit16 vx = vy & lit16
0xD6 or-int/lit16 vx,vy,lit16 vx = vy | lit16
0xD7 xor-int/lit16 vx,vy,lit16 vx = vy ˆ lit16
0xD8 add-int/lit8 vx,vy,lit8 vx = vy + lit8
0xD9 sub-int/lit8 vx,vy,lit8 vx = vy - lit8
0xDA mul-int/lit-8 vx,vy,lit8 vx = vy * lit8
0xDB div-int/lit8 vx,vy,lit8 vx = vy / lit8
0xDC rem-int/lit8 vx,vy,lit8 vx = vy % lit8
0xDD and-int/lit8 vx,vy,lit8 vx = vy & lit8
0xDE or-int/lit8 vx, vy, lit8 vx = vy | lit8
0xDF xor-int/lit8 vx, vy, lit8 vx = vy ˆ lit8
0xE0 shl-int/lit8 vx, vy, lit8 vx = vy + lit8
0xE1 shr-int/lit8 vx, vy, lit8 vx = vy + lit8
0xE2 ushr-int/lit8 vx, vy, lit8 vx = vy + lit8
0xE3 unused E3 -
0xE4 unused E4 -
0xE5 unused E5 -
0xE6 unused E6 -
0xE7 unused E7 -

Table 1: Jimple Code representation of Dalvik Instructions

Opcode Opcode name Jimple Code
0xE8 unused E8 -
0xE9 unused E9 -
0xEA unused EA -
0xEB unused EB -
0xEC unused EC -
0xED unused ED -
0xEE execute-inline

{parameters},inline ID
odex

0xEF unused EF -
0xF0 invoke-direct-empty odex
0xF1 unused F1 -
0xF2 iget-quick vx,vy,offset odex
0xF3 iget-wide-quick vx,vy,offset odex
0xF4 iget-object-quick vx,vy,offset odex
0xF5 iput-quick vx,vy,offset odex
0xF6 iput-wide-quick vx,vy,offset odex
0xF7 iput-object-quick vx,vy,offset odex
0xF8 invoke-virtual-quick

{parameters},vtable offset
odex

0xF9 invoke-virtual-quick/range
{parameter range},vtable offset

odex

0xFA invoke-super-quick
{parameters},vtable offset

odex

0xFB invoke-super-quick/range
{register range},vtable offset

odex

0xFC unused FC -
0xFD unused FD -
0xFE unused FE -
0xFF unused FF -

