Model Driven Mutation Applied to
Adaptative Systems Testing

Alexandre Bartel!, Benoit Baudry?, Freddy Munoz?, Jacques Klein!, Tejeddine Mouelhi' and Yves Le Traon'

! Interdisciplinary Center for Security, Reliability and Trust
University of Luxembourg
L-1359 Luxembourg-Kirchberg, Luxembourg
{alexandre.bartel, jacques.klein, tejeddine.mouelhi, yves.letraon}@uni.lu

2 INRIA Centre Rennes - Bretagne Atlantique
Campus de Beaulieu
35042 Rennes, France
{benoit.baudry, freddy.munoz}@inria.fr

Abstract—Dynamically Adaptive Systems modify their behav-
ior and structure in response to changes in their surrounding
environment and according to an adaptation logic. Critical sys-
tems increasingly incorporate dynamic adaptation capabilities;
examples include disaster relief and space exploration systems. In
this paper, we focus on mutation testing of the adaptation logic.
We propose a fault model for adaptation logics that classifies
faults into environmental completeness and adaptation correct-
ness. Since there are several adaptation logic languages relying
on the same underlying concepts, the fault model is expressed
independently from specific adaptation languages. Taking benefit
from model-driven engineering technology, we express these
common concepts in a metamodel and define the operational
semantics of mutation operators at this level. Mutation is applied
on model elements and model transformations are used to
propagate these changes to a given adaptation policy in the
chosen formalism. Preliminary results on an adaptive web server
highlight the difficulty of killing mutants for adaptive systems,
and thus the difficulty of generating efficient tests.

Index Terms—model driven engineering, MDE, mutation, test-
ing, adaptative systems

I. INTRODUCTION

Dynamically Adaptative Systems (DAS) must adapt them-
selves to ongoing circumstances and find the way to continue
accomplishing their functionalities. DAS play increasingly
important role in society’s infrastructures; the demand for
DAS appears in application domains ranging from crisis man-
agement applications such as disaster management [8], space
exploration [6], and transportation control to entertainment and
business applications. This demand is intensified by the mobile
and nomadic nature of many of these domains. The IDC!
analysts forecast a global increase in the number of mobile
workers to more than 1.19 billion by 2013 [5].

DAS respond to environmental changes by modifying their
internal configuration to continue meeting their functional
and non-functional requirements. Designing a DAS involves

'IDC is an analyst company and a global provider of market intelligence,
advisory services, and events for the information technology, telecommunica-
tions, and consumer technology markets.

specifying environmental fluctuations that have an impact on
the system, as well as the related strategies for performing
the structural changes. This is captured by an adaptation logic
that expresses the actions to be adopted when the environment
changes [4], [7], [9], [15]. More precisely, adaptation logics
drive the adaptation process and compute the right system
configuration that should be adopted given an environmental
condition.

This paper focuses on the issue of testing whether an
adaptation logic is correctly implemented. More specifically,
we focus on mutation of adaptation logic, considering that
test cases should be able to distinguish between the original
adaptation logic and the mutated one. Mutation thus provides
a qualification criterion for test cases.

We use a Model-driven engineering (MDE) process to
model adaptation formalisms/languages as well as adaptation
policies defined according to these formalisms. A metamodel
captures all the necessary concepts for representing action-
based adaptation policies. From the metamodel, we derive
mutation operators that can apply to several action-based
adaptation formalisms.

We classify adaptation logic faults into two groups:

1) The possible environmental conditions the system will
face, and

2) the complexity involved in producing a response to those
conditions.

The first, environmental completeness (EC) faults embody
faults due to gaps in the space covered by the adaptation
logic, thereby missing adaptations for environmental changes.
The second, adaptation correctness (AC) faults embody faults
due to incorrect adaptations to environmental changes. Our
hypothesis is that managing environmental changes involving
a single property variation (simple) is easy, whereas managing
several properties varying at the same time (complex) is
error prone. We summarize the contributions of this paper as
follows:

1) A generic metamodel capturing the concepts inherent to

adaptation logic, completed with model transformations
from two different input formalisms.

2) A generic set of mutation operators for adaptation logics
as well as a specialization of this model to action-based
adaptation logics.

3) A first proof of concepts through an adaptive web server
case study.

It has to be noted that we do not deal with efficient test cases
generation in this paper, and for the experiments we simply
create test sequences randomly (sequence of events issued by
the environment).

The remainder of this paper proceeds as follows. Section
2 provides a background on dynamically adaptive systems.
Section 3 introduces model driven engineering techniques
and explains how they can be used with testing adaptation
logics. Section 4 describes the first mutation operators we
used. Section 5 presents our first experiments. Section 6
presents the related work. Finally, we conclude and present
our perspectives in section 7.

II. DYNAMICALLY ADAPTIVE SYSTEMS

Consider an adaptive web server, which processes file
requests over the HTTP protocol. It answers these requests as
fast as possible while optimizing the resources it consumes,
e.g. memory, CPU time, etc. Additionally, it provides non-
stop service, thus it needs to adapt its internal structure to
respond to a changing working environment. This environment
is characterized by the variable amount of requests over time.

A. Environment and configurations

Dynamically adaptive systems (DAS) encode the environ-
ment into an abstraction called context.

Definition 1 (context). A context consists of a n-tuple of
fields <po,p1, ..., pn>, where each field p; represents an
environmental property. The type of each field is defined by
the encoding chosen for the property it represents.

In our adaptive web server example, the environment is
modeled as a context with two properties:

« pi1: number of request per second (server load);
o po: the percentage of request (request density).

The last one corresponds to the number of requested files.
The domain or type of each property has a lower and an
upper bound. For instance, we associate the type integer with
request density and server load, a lower bound O and upper
bound 100 for both. The server load domain indicates that the
minimum amount of request in one second is 0 (no request)
and the maximal is 100. Analogous, request density indicates
the number of requested files.

Definition 2. Specific environmental conditions at an instant
t are drawn by an instance I of the context representing
the environment. Such an instance is an n-tuple of values
corresponding to the punctual value of a particular property.

The context instance <12, 3> designates a particular envi-
ronmental condition with 12 requests per second requesting

3 different files. A sequence of context instances Iy, 1, Io,
..., I, ordered by their occurrence over time is called a
context flow (CF). A context generates a space containing
all the possible instances that can produce the combination
of property values. The context of the adaptive web server
generates a space containing all its possible context instances.

B. Adaptation logic

Adaptation in DAS is driven by an adaptation logic (adap-
tation model) that uses a specific strategy to describe the
configuration to adopt given a context change.

Definition 3. An adaptation logic defines a relation be-
tween contexts and system configuration. It receives a context
instance (current environmental condition), a context flow
(history of the environment, and the history of the system
configuration, and gives the next configuration the system must
adopt.

There exist several strategies to describe adaptation logics,
a few examples are: action-based adaptation [9], where adap-
tations are triggered when a condition is satisfied; goal based
adaptation [7], where adaptations are performed to reach a
specific goal; and utility function based adaptation [15], where
adaptations are calculated according to a cost function based
on environmental conditions and variation point value.

An action-based strategy describes the adaptation logic of
the adaptive web server [9]. In this case the adaptation logic
is a set of rules (adaptation policies) that, whenever an event
occurs (environmental change) evaluate if a set of conditions
are satisfied, and if it is so, they perform a series of adaptation
actions.

Table T
EXCERPT OF THE ADAPTIVE WEB SERVER ADAPTATION LOGIC.

: when requestdensity is ’high’ or ’medium’

if cacheHandler.size ==

N =

3: then utility of addCache is ’“high’

5: when requestdensity is ’‘low’

6: if cacheHandler.size ==

7: then utility of addCache is ’low’

9: when LOAD is ’high’

10: if FileServers.size <= 10

11: then utility of addFileServer is ’high’
12: when LOAD is ’LOW’

13: if FileServers.size <= 10

14: then utility of addFileServer is ’low’

Table I presents an excerpt of the adaptive web server
adaptation logic. The first two rules manage the system cache.
The first rule (lines 1-3) enables the cache mechanism when
the request density is high or medium (line 1) and there is
no cache (line 2). The second rule (lines 5-6) is analogous to
the first. It reflects the fact that when the dispersion is high,
adding a cache is not very useful. The remaining rules (lines
9-14) handle the variations of the server load property.

While table 1 presents a textual action-based adaptation
logic, the Diva framework? allows to express the adaption
policy in the form of a set of tables which are directly
manipulated as models elements. Thus the connection with
our MDE process is natural.

1II. MDE AND ADAPTATION LOGICS

This section will introduce the MDE concepts which are
required to understand how we create and use mutation
operators later in the paper.

A. Metamodeling, Kermeta and Sintaks

This section summarizes the intents of metamodelling and
how the Kermeta environment fits in this modelling activity.

1) Metamodelling: Metamodelling is a technique used to
build a metamodel that defines a modeling language for a
particular domain. The metamodel defines the concepts and
relationships that describe the domain. A metamodel is itself
a model expressed with a modeling language called the meta-
metamodel.

2) Kermeta : Kermeta [14] is a metamodelling environ-
ment developed at IRISA (Research Institute in Information
technology and rAndom Systems). This imperative and object-
oriented language is used to provide an implementation of
operations defined in metamodels.

3) Sintaks: Sintaks [13] is a tool to defines bridges between
plain text files and models.

B. Action-based adaptation logic metamodel

Figure 1 represents the metamodel we propose to represent
the abstraction of action-based adaptation logics. An action-
based adaptation logic always consists of a set of rules (Rule-
Set in the figure) called Event-Condition-Action, or ECA,
rules. One ECA rule (Rule) features one event (Property), one
condition (Condition) and one action (Action). An event is
bound to a context property. When the bounded context prop-
erty changes and its new value matches the event condition
(propertyCondition), then the rule is executed. When the rule
is executed the condition (Condition->BoolExpression) has to
be true to perform the rule’s action. This condition usually
refers to internal states of the adaptation system. The action
consists of assigning a new value (newValue) to a property
(actionProperty).

In short, a rule performs an Action if the bounded Event
property in the new context matches the Event condition and
if the rule Condition is true. For instance, the first rule of
the adaptation logic represented table I, is bounded to the
property “requestdensity”. The rule will be executed only after
specific context changes in which the property became “high”
or “medium”. The action of assigning “high” to “addCache” is
only performed if the internal variable cacheHandle.size equals
Zero.

The metamodel ecore file was created using EMF (Eclipse
Modeling Framework) and GEE (Graphical Ecore Editor).

We will describe the process of mutant generation as well
as the genericity of the metamodel in the following section.

Zhttp://www.ict-diva.eu/DiVA/

C. Generic process for mutant generation

Metamodel
ECA

A

" based
on

conform to
conform to

L1 in plain text Model instance

2
L 3

L1 in plain text Model instances

- 4 Sintaké K ;
Adaptation : Mutation
R AP
policy (AP) 1 operators

Kermeta

Figure 2. Mutants generation process.

Figure 2 represents the mutants creation process. The pro-
cess start by selecting an adaptation policy (AP) expressed in
an action-based language (L1 on the figure). The first step (1)
is to transform the adaptation policy into a model conforming
to the metamodel. The second step consists in applying
the mutation operators to the policy. Mutation operators are
generic and work on models, not plain text files. Once the
mutant models have been generated, they are transformed in
plain text files. The Sintaks tool was used to do a mapping
between a rule set written in plain text and its model repre-
sentation.

Since mutation operators are defined from the metamodel
and are working on models, they are independent of the action-
based language used to write the adaptation policy: a bridge
between textual files and models must be defined for each
language. This is achieved by defining one bridge for each
language with Sintaks.

As a result we got a set ofResulting plaintext mutants will
be used to test the adaptation logic’s test suites. We consider
that test suites must be able to distinguish a correct adaptation
logic from the incorrect ones.

In the following section we introduce the first mutation
operators.

IV. MUTATION OPERATORS FOR ADAPTATION LOGICS

Definition 3 introduces the concept of adaptation logic as the
driver of the adaptation. Testing the realization of such driver
means verifying whether the system is capable of adapting to
environmental changes, and whether such adaptations proceed
as expected. This section presents the challenges associated
with testing adaptation logics, as well as a fault model for
adaptation logics.

A. Testing challenges

Testing adaptation logics involves generating context in-
stances, and evaluating the results of exposing the system to
such context instances.

Three steps compose the testing process:

Cohdltlg/‘

91—
——

H Ruleset

L)

rule
0,*

H Rule
= name ! EString

onditionCondition

1My
H BeoclExpression

boolLeft boolRight

,/
‘/
-
N property action
H Property 1
f— TEGEr] H Action
propertyMName : EString 1
1 - —
actionProperty
propertyCondition
pMName
newvalue

1

condRight 1 H Expression
|E Booloperator | B operator e T T .
I I l - conLeft 1 f / N
beRight efﬁ startvalue ‘
c/”/_ 1

|B PropertyString |E BinaryExpressionop| | H Value E Interval

[| | | | = intervalMame

[| [1 11

N AN N — -
endvalue

E Equalop

Figure 1. Metamodel of action-based adaptation logics

1) Initially, testers synthesize a context flow from a series
of context instances.

2) Then, they execute and expose the system to the gener-
ated context flow. Testers evaluate whether the configu-
rations adopted by the system (configuration flow) when
exposed to environmental changes are as expected. If
not, the adaptation logic contains a fault.

3) The process may start again until a qualification criterion
is reached.

Note that (1) and (2) are not the object of the paper. Thus we
generate test cases randomly. We rather focus on (3).

A test suite is a set of fest cases. In this paper a test case is
defined as a context flow of a certain length, L. L represents
the number of context instances in the flow. Given a flow
f containing L context instances I; ¢ € (1,2,...,L), I; and
I, differs by one or more of their properties’ values. For
each I; the adaptive system will generate one ore more events
corresponding to the properties that have changed. Those
events are then handled by the adaptation logic (rules) which
generates a new configuration for the system.

A test case is said to kill a mutant if the result (new
configuration) generated by the mutant adaptation logic differs
from the result given by the original adaptation logic.

This process enables us to detect:

o duplicate rules or useless rules (the mutant is not killed

in this case)

« errors in the adaptation logic

H mMultiplicativeop

H Real
= val : EFloat

H sSusbtractiveOp

E Integer
= val : EInt

— either an event in not handled properly or
— an incorrect action in performed leading to an incor-
rect new configuration

B. Fault model for adaptation logics

Managing the scenarios to which a system adapts is complex
due to their large number and the difficulty to foresee the
interactions between them.

In this section we introduce generic mutation operators for
the adaptation logics metamodel. Those operators will mutate
adaptation logic models conforming to the metamodel and thus
are independent of any adaptation logic language.

1) Environmental completeness faults : Definition 1 defines
a context as a tuple of fields representing environmental
properties. The adaptation logic interprets these fields’ values,
and decides the system configuration that best fits the environ-
mental conditions. It is possible, however, that the adaptation
logic neglects some property values, or a complete property.
We call faults of this type environmental completeness (EC)
faults.

In the following, we describe three different types of EC
faults represented as mutation operators.

1) ICP - Ignore Context Property

For a given property p, delete each rule that can be
executed on p.

For instance, when ignoring property “requestdensity”
the two last rules in table I (lines 9-14) are deleted.
2) ISV - Ignore Specific Context Property Value

For a given couple (property p, value v), delete each
rule that can be executed when p equals v.

When ignoring value “high” for property “LOAD” one
rule (lines 9-11) is deleted.
3) IMV - Ignore Multiple Context Property Values

For a given set of couples (property p;, value v;),
delete each rule that can be executed when any p;
4 € {1,2,..,N}) equals v;. (At least two rules with
different properties are modified/deleted).

When ignoring value “high” for property “LOAD” and
“low” for property “requestdensity”, two rules (lines 5-7
and lines 9-11) are deleted.

2) Adaptation correctness faults : The observable behavior
produced by the adaptation logic is the adaptation it produces
facing an environmental change. Some times such adaptation
does not change the system in the expected way. We call
this kind of faults adaptation corrected (AC) faults, because
they lead directly to incorrect adaptations. Notice that the
observable behavior of EC faults is manifested in at least one
of the following AC faults.

1) SRA - Swap Rule Action

The action values from two rules modifying the same

context flow

'S
properties

sensor
values

Adaptation logic

environment
emulator

ECA
rules
v

reconfiguration
engine

reconfiguration request

reconfiguration probe

Figure 3.
logic

Instrumented architecture of the adaptive web server adaptation

adaptation rule matches the values, then it requests the system
implementation to reconfigure as described by the rule.

To inject context instances and collect reconfiguration data
we have instrumented the adaptation logic. Figure 3 presents
the instrumented architecture. We have modified the source
code of the sensor component and replaced the environment
sensing mechanism with an environment emulator. This em-
ulator reads context flows from a text file and injects them
into the system provoking the instrumented sensor to respond
identically to the non-instrumented one. We have also added a
reconfiguration probe that records the reconfiguration requests
produced by the reconfiguration engine.

B. Experiment set up, results and analysis

Table 1T
EXPERIMENT SET-UP AND EXECUTION

of test suites 30
property are Swapped. # of context flows per test suite 10
of context instances per flow 20
For instance “high” and “low” swap lines 11 and 14 in # of mutants of the adaptation logic 130

table I for property “addFileServer”.
2) Modify Rule Condition Value

The condition value (always on the right part of the
condition), for a condition which uses operator > or
<, in a rule is decreased or increased, respectively.

For instance in table I line 10, the value “10” is increased
to “100”.

V. EXPERIMENTS

In this section we present a preliminary proof of concept
based on the adaptative web server system.

A. Test subject

To validate our hypothesis about the ability of AST to
uncover faults in adaptation logics, we use the adaptive web
server presented in section 2 as a test subject.

Figure 3 illustrates the architectural realization of the adap-
tation logic presented in section 2. It is composed of a sensor
component, which is aware of the environment and collects
the data produced by environmental changes. It encodes the
data into values representing the environmental properties of
interest (context instance) and passes them to a reconfiguration
engine. Finally, the reconfiguration engine loads the adaptation
rules and matches the values against the adaptation rules. If an

[Total number of simulations [39.000 (30 - 10 - 20 - 130) |

1) Experiment: We prepared and executed our experiment
as described in table II. We generated 30 test suites. Each of
them contains 10 test cases (context flows). A flow is created
by uniformly selecting a sequence of context instances among
all the possible context instances.

Table IIT
EXPERIMENT RESULTS

Test suite [Random |
91/130 = 70%
96/130 =~ 74%

93/130 ~ 71%

minimun mutation score
maximum mutation score
average mutation score

2) Results and analysis: Table III presents the global mu-
tation score (number of unique killed mutants).

What we notice is that 30% of the mutants are not killed
with random-generation. Even if we take longer test cases the
results are similar. This first shows that other techniques should
be studied.

C. Threats to validity

There exists no perfect data, or perfectly trustable analysis
results, and this study is not an exception. For this reason
we identify the construction, internal and external threats to
validity for this study.

Internal threats lie on the source and nature of the empirical
data. We recognize that we have only studied a small adaptive
system realizing the adaptation logic through action-based
reasoning. The limited number of environmental properties,
and the size of the space represent a threat since it is easy to
achieve a uniform coverage with few context instances.

External threats lie on the statistical significance of our
study. We are aware that since the adaptive system is small and
only one, it does not represent the industrial trends. To make
more general statements it is necessary to try the presented
technique on large system. However, DAS are an emergent
technology still paving its adoption.

VI. RELATED WORK

As far as we know there is no other work that uses mutation
to measure the quality of adaptation logics’ tests. However,
a large number of researchers have addressed the validation
and testing problem of adaptive systems. Zhang et al. [17] ad-
dress the verification of dynamically adaptive systems through
modular model checking. They model the adaptive system as
finite state machine in which states represent different system
variants. Zhang and Cheng [16] introduce a model-based
development process for adaptive software that uses Petri-nets.
Biyani and Kulkarni [3] use predicate detection for testing
adaptive systems during adaptation. They extend existing
algorithms based of global predicate evaluation [2] for testing
distributed systems to the system during adaptation. Kulkarni
and Biyani[l1] introduce an approach using proof-lattice to
verify that all possible adaptation paths do not violate global
constraints. Allen et al [1] used the Wright ADL to integrate
the specifications of both architectural and behavioral aspects
of dynamically reconfigurable systems. Kramer and Magee
[10] use property automata and labeled transition systems to
specify and verify adaptive program’s properties. The main
difference between these verification approaches and ours is
the focus of attention. We are interested in verifying through
testing the adaptation driver, and not the adaptation process
itself. Furthermore, these approaches require computing the
entire system configurations and the transitions between them,
however sometimes this is not possible.

Lu et al. [12] study the testing of pervasive context-aware
software. They propose a family of test adequacy criteria that
measure the quality of test sets with respect to the context
variability.

Since very different testing techniques exist, we hope that
mutation will reveal itself as a good way to compare them.

VII. CONCLUSIONS AND PERSPECTIVES

The mutation operators presented in this paper are a first
proposal to offer a qualification environment for comparing
testing techniques applied to action-based adaptative systems.
The use of MDE makes it possible to derive mutants for
most action-based logics, thus providing a common framework
for such test cases qualification. The case study shows the
feasibility of the approach and confirms that, for killing
mutants, other testing techniques should be considered rather
than random test generation. Due to the size of the case

study and the number of environmental properties it contains,
it is not possible to generalize to larger DAS. Future work
will thus consist of completing the set of mutation operators,
and will exhibit experimental results on other case studies
comparing several test generation techniques. We plan to
experiment with a much larger case study, which comprises
several environmental properties and interactions. Furthermore
we plan studying and specializing our fault model to other
adaptation logic technologies, such as goal oriented.

REFERENCES

[1] R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dynamic
software architectures. pages 21-37.

[2] O. Babaoglu and K. Marzullo. Consistent global states of distributed
systems: Fundamental concepts and mechanisms. Technical Report
UBLCS-93-1, University of Bologna, Department of Computer Science,
Jan. 1993.

[3] K. N. Biyani and S. S. Kulkarni. Testing dynamic adaptation in
distributed systems. In H. Zhu, W. E. Wong, and A. M. Paradkar, editors,
AST, pages 51-54. IEEE, 2007.

[4] F. Chauvel, O. Barais, I. Borne, and J.-M. Jézéquel. Composition
of qualitative adaptation policies. In Automated Software Engineering
Conference (ASE 2008), pages 455-458, 2008. Short paper.

[5] S. D. Drake, R. Boggs, and J. Jaffe. Worldwide mobile worken
population 2009-2013 forecast, 2010.

[6] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Software architec-
ture themes in JPL’s mission data system. In AIAA Space Technology
Conference and Exposition, Albuquerque, NM., 1999.

[7]1 F. Eliassen, E. Gjgrven, V. S. W. Eide, and J. A. Michaelsen. Evolving
self-adaptive services using planning-based reflective middleware. In
N. V. Geoff Coulson, editor, The 5th annual Workshop on Adaptive and
Reflective Middleware (ARM 2006), pages 1-6. ACM Press, 2006.

[8] D. Hughes, P. Greenwood, G. Blair, G. Coulson, P. Smith, and K. Beven.
An intelligent and adaptable grid-based flood monitoring and warning
system. In Proceedings of the UK eScience All Hands Meeting, pages
53-60, 2005.

[9] J. Keeney and V. Cahill. Chisel: A policy-driven, context-aware, dynamic
adaptation framework. In Proceedings of the 4" IEEE International
Workshop on Policies for Distributed Systems and Networks (Policy
2003), pages 3—14. IEEE, June 2003.

[10] J. Kramer and J. Magee. Analysing dynamic change in distributed
software architectures. IEE Proceedings - Software, 145(5):146-154,
1998.

[11] S. S. Kulkarni and K. N. Biyani. Correctness of component-based
adaptation. In I. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. C.
Wallnau, editors, CBSE, volume 3054 of Lecture Notes in Computer
Science, pages 48-58. Springer, 2004.

[12] H. Lu, W. K. Chan, and T. H. Tse. Testing pervasive software in the
presence of context inconsistency resolution services. In W. Schifer,
M. B. Dwyer, and V. Gruhn, editors, 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008,
pages 61-70. ACM, 2008.

[13] P-A. Muller, F. Fleurey, F. Fondement, M. Hassenforder, R. Schneck-
enburger, S. Gérard, and J.-M. Jézéquel. Model-driven analysis and
synthesis of concrete syntax. In Proceedings of the MoDELS/UML 2006,
Genova, Italy, Oct. 2006.

[14] P-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving executability into
object-oriented meta-languages. In S. K. L. Briand, editor, Proceed-
ings of MODELS/UML’2005, volume 3713 of LNCS, pages 264-278,
Montego Bay, Jamaica, Oct. 2005. Springer.

[15] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility functions
in autonomic systems, 2004.

[16] J.Zhang and B. H. C. Cheng. Model-based development of dynamically
adaptive software. In L. J. Osterweil, H. D. Rombach, and M. L. Soffa,
editors, /ICSE, pages 371-380. ACM, 2006.

[17] J. Zhang, H. Goldsby, and B. H. C. Cheng. Modular verification of
dynamically adaptive systems. In Proceedings of the 8th International
Conference on Aspect-Oriented Software Development, AOSD 2009,
Charlottesville, Virginia, USA, March 2-6, 2009, pages 161-172. ACM,
2009.

