Static Analysis of Android Apps: A Systematic Literature Review

LiLi®!, Tegawendé F. Bissyandé?, Mike Papadakis?, Siegfried Rasthofer?, Alexandre Bartel®2, Damien Octeau®, J acques Klein?,
Yves Le Traon?*

“Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
b Fraunhofer SIT, Darmstadt, Germany
¢ University of Wisconsin and Pennsylvania State University

Abstract

Context: Static analysis exploits techniques that parse program source code or bytecode, often traversing program paths to
check some program properties. Static analysis approaches have been proposed for different tasks, including for assessing the
security of Android apps, detecting app clones, automating test cases generation, or for uncovering non-functional issues related to
performance or energy. The literature thus has proposed a large body of works, each of which attempts to tackle one or more of the
several challenges that program analysers face when dealing with Android apps.

Objective: We aim to provide a clear view of the state-of-the-art works that statically analyse Android apps, from which we
highlight the trends of static analysis approaches, pinpoint where the focus has been put, and enumerate the key aspects where
future researches are still needed.

Method: We have performed a systematic literature review (SLR) which involves studying 124 research papers published in
software engineering, programming languages and security venues in the last 5 years (January 2011 - December 2015). This review
is performed mainly in five dimensions: problems targeted by the approach, fundamental techniques used by authors, static analysis
sensitivities considered, android characteristics taken into account and the scale of evaluation performed.

Results: Our in-depth examination has led to several key findings: 1) Static analysis is largely performed to uncover security
and privacy issues; 2) The Soot framework and the Jimple intermediate representation are the most adopted basic support tool and
format, respectively; 3) Taint analysis remains the most applied technique in research approaches; 4) Most approaches support
several analysis sensitivities, but very few approaches consider path-sensitivity; 5) There is no single work that has been proposed
to tackle all challenges of static analysis that are related to Android programming; and 6) Only a small portion of state-of-the-art
works have made their artefacts publicly available.

Conclusion: The research community is still facing a number of challenges for building approaches that are aware altogether
of implicit-Flows, dynamic code loading features, reflective calls, native code and multi-threading, in order to implement sound
and highly precise static analyzers.

1. Introduction losses with malware sending premium-rate SMS, reputation is-
sues with private data leaks, etc). Data from anti-virus vendors
and security experts regularly report on the rise of malware in
the Android ecosystem. For example, G DATA has reported
that the 560,671 new Android malware samples collected in the
second quarter of 2015 revealed a 27% increase, compared to
the malware distributed in the first quarter of the same year [3].

To deal with the aforementioned threats, the research com-
munity has investigated various aspects of Android develop-
ment, and proposed a wide range of program analyses to iden-
tify syntactical errors and semantic bugs [4} 3], to discover sen-
sitive data leaks [6, [7]], to uncover vulnerabilities [} 9], etc. In
most cases, these analyses are performed statically, i.e., with-
out actually running the Android app code, in order not only to
ensure scalability when targeting thousands of apps in stores,
but also to guarantee a traversal of all possible execution paths.
Unfortunately, static analysis of Android programs is not a triv-
Email address: 1i.1i@uni.1u (Li Li) ial endeavour since one must account for several specific fea-
' Corresponding author. tures of Android, to ensure both soundness and completeness

2 i i i i -
the author was employed at .the Technical University of Darmstadt, Ger of the analysis. Common barriers to the design and implemen-
many, when he first worked on this paper

Since its first commercial release in September 2008, the
Android mobile operating system has witnessed a steady adop-
tion by the manufacturing industry, mobile users, and the soft-
ware development community. Just a few years later, in 2015,
there were over one billion monthly active Android users, mean-
while its official market (Google Play) listed more than 1.5 mil-
lion apps. This adoption is further realised at the expense of
other mobile systems, since Android accounts for 83.1% of the
mobile device sales in the third quarter of 2014 [1I], driving a
momentum which has created a shift in the development com-
munity to place Android as a “priority” target platform [2].

Because Android apps now pervade all user activities, ill-
designed and malicious apps have become big threats that can
lead to damages of varying severity (e.g., app crashes, financial

Preprint submitted to Information and Software Technology March 6, 2017

tation of performant tools include the need to support Dalvik
bytecode analysis or translation, the absence of a main entry
point to start the call graph construction and the constraint to
account for event handlers through which the whole Android
program works. Besides these specific challenges, Android car-
ries a number of challenges for the analysis of Java programs,
such as how to resolve the targets of Java reflection statements
and deal with dynamic code loading. Thus, despite much efforts
in the community, state-of-the-art tools are still challenged by
their lack of support for some analysis features. For example,
the state-of-the-art FlowDroid [[6] taint analyzer cannot track
data leaks across components since it is unaware of the Android
Inter-Component Communication (ICC) scheme. More recent
tools which focus on ICC calls may not account for reflective
calls.

Because of the variety of concerns in static analysis of An-
droid apps, it is important for the field, which has already pro-
duced substantial amount of approaches and tools, to reflect on
what has already been done, and on what remains to do. Al-
though a recent survey [[10] on securing Android has mentioned
some well-known static analysis approaches, a significant part
of current works has been skipped from the study. Furthermore,
the study only focused on general aspects of Android security
research, neglecting basic characteristics about the static anal-
yses used, and missing an in-depth analysis of the support for
some Android-specific features (e.g., XML Layout, or ICC).

This paper is an attempt to fulfill the need of a compre-
hensive study for static analysis of Android apps. To reach our
goal, we performed a systematic literature review (SLR) of such
approaches. After identifying thoroughly the set of related re-
search publications, we perform a trend analysis and provide a
detailed overview on key aspects of static analysis of Android
apps such as the characteristics of static analysis, the Android-
specific features, the addressed problems (e.g. security or en-
ergy leaks) and also some evaluation-based empirical results.
Finally, we summarize the current limitations of static analysis
of Android apps and point out potential new research directions.

The main contributions of this paper are:

e We build a comprehensive and searchable repositoryﬂ of
research works dealing with static analysis for Android
apps. These works are categorized following several cri-
teria related to their support of common analysis charac-
teristics as well as Android-specific concerns.

e We analyze in detail key aspects of static analysis to sum-
marize the research efforts and the reached results.

e We further enumerate the limitations of current static anal-
ysis approaches (on Android) and provide insights for po-
tential new research directions.

o Finally, we provide a trend analysis on this research field
to report on the latest focus as well as the level of maturity
in key analysis problems.

3Repository available at: http://lilicoding.github.io/SA3Repo

The paper continues as follows. Section [2]explains the nec-
essary background on static analysis and on the Android sys-
tem. Section [3]describes the methodology we followed for the
literature review. Section [4| presents the data we extract from
the primarily selected papers and Section [5]leverages the data
that we extract to answer the proposed research questions. In
Section [6]and Section[7] we discuss our findings and the poten-
tial threats to the validity of this study, respectively. Section [§]
discusses related work and Section [9]concludes this paper.

2. Background Information on Android and Static Analysis

We now provide to the reader the preliminary details which
are necessary to understand the purpose, techniques and key
concerns of the various research work that we have reviewed.
Mainly, we summarize the different aspects of static analysis
in general in Section before revisiting some details of the
Android programming model in Section

2.1. Concepts of Static Program Analysis

Static program analysis generally involves an automated tool
that takes as input the source code (or object code in some
cases) of a program, examines this code without executing it,
and yields results by checking the code structure, the sequences
of statements, and how variable values are processed through-
out the different function calls. The main advantage of static
analysis is that all the code is analyzed. This differs from dy-
namic analysis where portions of code could only be executed
under some specific conditions that could never be met dur-
ing the analysis phase. A typical static analysis process starts
by representing the analyzed app code to some abstract models
(e.g., call graph, control-flow graph, or UML class/sequence di-
agram) based on the purpose of analysis. Those abstract mod-
els actually provide a simplified interface for supporting upper-
level client analyses such as taint analysis. Other information,
such as the values of variables (e.g., propagated from constant
values) at different statements of the CFG can also be collected
to allow the static analysis to support more in-depth verifica-
tion, e.g., through data-flow analysis.

We now briefly summarize the key concepts of static anal-
ysis, including the main analysis techniques (in Section [2.1.1)),
the construction of call graphs (in Section and the call
graph enrichment related techniques (in Section 2.1.3). For
more details, we encourage interested readers to refer to the
doctoral dissertation of Alexandre Bartel [11]], a co-author of
this literature review.

Note that in this section, we will mainly focus on detail-
ing call graphs for static analysis, instead of other represen-
tations such as UML class/sequence diagram. The main rea-
son for this emphasis on call graphs is that, to the best of our
knowledge, most relevant research works that perform inter-
procedural analysis on object-oriented programs (e.g., Android
apps) have somehow leveraged call graphs in their analyses.
This observation is also confirmed by the primary publications
selected in this SLR. Although other representations (e.g., UML-
based instead of call graph) are also possible for facilitating

http://lilicoding.github.io/SA3Repo

I|public class MyOjbect {

2| public static void main(String[] args) {
3 MyOtherObject o = new MyOtherObject();
4 if (args.length == 2) {

5 o.method1 (2);

6 } else {

7 o.method2("hi!");

8 }

91 ¥

10|}

12| public class MyOtherObject {
13 int a = 0;
14 public MyOtherObject () {

15 this.a = 3;

16 ¥

17| public void methodl(int i) {
18 this.a += 1i;

19 if (i == 55)

20 this.methodl (55)

21 }

22 public void method2(String s) {
23 this.a += s.size();

24 }

25| public void method3(int j) {
26 this.method2(j);

27 this.method2(j);

28 }

29|}

(a) A Java program

main
cj(v)
<init> methodl method2
Y
size

(b) Corresponding Call Graph

Figure 1: Source Code of a two-classes Java program and its Call Graph Generated from the main Method

the process of static analysis, call graph is more widely used
in the community. A possible reason for this trend could be
that many static approaches, which statically analyze Android
apps, are implemented on top of well-known frameworks such
as Soot [12] and WALA [13]] that provide, by default, off-the-
shelf call graph construction facilities, making call graph con-
struction a common step for inter-procedural static analysis.

2.1.1. Analysis Techniques

Control-flow analysis. A control-flow analysis is a technique to
show how hierarchical flow of control within a given program
are sequenced, making all possible execution paths of a pro-
gram analyzable. Usually, the control sequences are expressed
as a control-flow graph (CFG), where each node represents a
basic block of code (statement or instruction) while each di-
rected edge indicates a possible flow of control between two
nodes.

Data-flow analysis. A data-flow analysis [14]] is a technique to
compute at every point in a program a set of possible values.
This set of values depends on the kind of problem that has to
be solved using data-flow analysis. For instance, in the reach-
ing definition problem, one wants to know the set of definitions
(e.g., statements such as int x = 3;) reachable at every pro-
gram point. In that particular problem, the set of possible values
at program point P is the set of definitions that reaches P (i.e.,
the variable is not redefined before it reaches P).

Points-to analysis. Points-to analysis consists of computing a
static abstraction of all the data that a pointer expression (or
just a variable) can point to during program run-time.

2.1.2. Call-Graph Construction

Because Android supports the object-oriented programming
scheme with the Java language, in the remainder of this section
we focus on the analysis of Object-Oriented programs. Such
programs are made of classes, each representing a concept (e.g.
a car) and including a set of fields to represent other objects
(e.g., wheels) and a set of methods containing code to manipu-
late objects (e.g, drive the car forward). The code in a method
can call other methods to create instances of objects or manip-
ulate existing objects.

A program usually starts with a single entry point referred
to in Java as the main method. A quick inspection of the main
method’s code can list the method(s) that it calls. Then, iter-
ating this process on the code of the called methods leads to
the construction of a directed graph (e.g., see Figure [I), com-
monly known as the call graph in program analysis. Although
the concept of a call graph is standard in static analysis ap-
proaches, different concerns, such as precision requirements,
may impact the algorithms used to construct a program’s call
graph. For Java programs, a number of popular algorithms have
been proposed, including CHA [15]], RTA [16], VTA [17], An-
dersen [18], Steensguard [[19], etc., each being more or less sen-
sitive to different properties of program executions. We detail
some of the main properties below to allow a clear differenti-
ation between research works in the literature. These proper-
ties are illustrated in Figure [2| with example code snippets and
the corresponding call graphs extracted in both cases where the
property holds and where it does not.

Flow Sensitivity. A flow-sensitive CG is a CG that is aware of
the order of program statements. In the illustrative example of
Figure[2a] a Human instance is first created and referred to by

Code Snippet Sensitive Call-Graph Insensitive Call-Graph

flowSensitivity flowSensitivity
1| public void flowSenmsitivity() {
2 Animal a = new Human();
3 a.walk();
4 a = new Cat();
o1 O O O
Human.walk Human.walk Cat.walk

(a) Flow Sensitivity

path; pathy
public void pathSensitivity() { (condition (condition PathSensitivity
Animal a = null: X o
s true is false;
if (condition) { is true))
a = new Human();
} else {
a = new Cat();

}
3 a-ualk s O O Human.walk Cat.walk
Human.walk Cat.walk

OO U U W —

(b) Path Sensitivity

public void fieldSensitivity) fieldSensitivity fieldSensitivity
cl new CQ);

C c2 = new CQ);
c1.f1 = new Human();
c2.f1 = new Cat();
c1.f1.walkQ);

}
public class C { O O @)

, Animal f1; Human.walk Human.walk Cat.walk

SO ® U R W —

(c) Field Sensitivity

public void contextSensitivity() {
Human h = new HumanQ);
Cat ¢ = new Cat();
Animal a = method(c);
a = method(h);
a.walk();

contextSensitivity contextSensitivity

}
public Animal method(Animal a) { O
, return aj; Human.walk Human.walk Cat.walk

S0 WU RN —

(d) Context Sensitivity

1| public void objectSensitivity () {

2 Contains c1 = new Contains();

3| Contains c2 = new Contains(); objectSensitivity objectSensitivity
4| cl.setAnimal(new Human());

5 c2.setAnimal (new Cat());

6| ci.animal.walkQ;

7

8

}

public class Contains {
9| Animal animal;
10 public void setAnimal(Animal a) {
11 this.animal = a; Human.walk Human.walk Cat.walk
12 }
13|}

(e) Object Sensitty

Figure 2: Five Examples of Sensitivity cases in Static Analysis of Object-Oriented Programs.

the Animal reference a. Then, method walk is called on a. At
execution time, only method Human . walk is called at this point
(line 3). Subsequently, the program associates the variable a
to a new instance of Cat. In the construction of the CG we
are interested in the building a directed graphs between method
calls, i.e., flowSensitivity (line 1) and walk (line 3) in our
case. When the CG is flow-sensitive, it contains a single edge
since, at line 3, a can only refer to a Human object. If the CG
is flow-insensitive, then, the order of positions of statements
can be switched between lines 3 and 4. Thus, the CG must
consider the case where a refers to a Car object when a.walk is
called. The flow-insensitive CG therefore contains two edges:
one from flowSensitivity to Human.walk and another to
Cat.walk. While in some cases a flow-insensitive CG may be
sufficient (e.g., to count the existence of certain APIs), in other
cases, it brings imprecision which will necessarily lead to false
positives (i.e., incorrect results) in the analysis.

Path Sensitivity. A path-sensitive CG takes the execution path
into account. In the illustrative example of Figure depend-
ing on the value of the condition in line 3, when the execu-
tion reaches line 8, a may refer to a Human object or a Cat
object. Thus, when path-sensitivity is taken into account, two
graphs must be produced, one for each path: in path;, at line 8,
a points to a Human object and thus method Human . walk is the
one included in the CG. On the other hand, in path,, a points
to a Cat object and thus method Cat .walk is in the call graph.
In contrast, when building a path-insensitive CG, at line 8§, a
points to both a Human object and a Cat, and the graph would
thus contain both method Human . walk and method Cat.walk.
Overall, path-sensitivity brings a scalability challenge for large
programs where there can be an exponential number of execu-
tion paths.

Field Sensitivity. A field-sensitive approach models each field
of each object. Take the code snippet of Figure [2c| as an ex-
ample. At lines 2 and 3, c1 and c2 are separately assigned to
new C objects, which contain a Animal field. At line 4, the
field of c1, (i.e., c1.£f1), points to a new Human object while
at line 5, the field of c2, (i.e., c2.£1), points to a new Cat ob-
ject. As a result of field-sensitive analysis, at line 6, the model
of c1.f1 can only point to a Human object and only method
Human.walk is in the field-sensitive call graph. On the other
hand, a field-insensitive approach, which only models each field
of each class of objectsﬂ This means that in the example field
cl.f1 and c2.f1 have the same model. Thus, at line 5 f1
points to a Human object and a Cat object and both method Hu-
man.walk and Cat.walk are in the field-insensitive call graph.

2.1.3. Graph Enrichment
During, or after, call-graph construction, the static analy-
sis purposes may require supplementary information about the

“4Theoretically, a field-insensitive analysis may not even take fields into con-
sideration. However, this kind of analysis is unlikely to be used with object-
oriented languages like Java/Android. Thus, in this work, we take all the cases
that are not field-sensitivity as field-insensitivity.

context in which the different methods are called. In particular,
this context can be modeled by considering the call site (i.e.,
context sensitivity) or by modeling the allocation site of method
objects (i.e., object sensitivity).

Context Sensitivity. In a context-sensitive analysis, when analysing

the target of a function call, one keeps track of the calling con-
text. This information may allow to go back and forth to and
from the original call site with precision, instead of trying out
all possible call sites in the program. In the illustrative example
of Figure[2d] at line 6, method walk is called by object a. Con-
sidering a context-sensitive analysis, each method call is mod-
eled independently. That is, for the first method call (line 4), the
model of the parameter points to ¢ and the return value model
points to c. For the second method call (line 5), the model of
the parameter points to h and the return value model points to h.
Thus, only method Human . walk is added to the call graph. On
the other hand, a context-insensitive analysis has only a single
model of the parameter and a single model of the return value
for a given method. Consequently, in a context-insensitive anal-
ysis the model of the parameter points to ¢ and h and the return
value to c and h. Thus, a context-insensitive approach has both
methods Human . walk and Cat.walk in the call graph.

Object Sensitivity. An object-sensitive approach is a context-
sensitive approach that distinguishes invocations of methods
made on different objects. Take the code snippet of Figure
as an example. At lines two and three, two Contains objects
are instantiated. Variables c1 and c2 refer to these objects. The
class Contains has an instance field animal of type Animal and
an instance method setAnimal to associate a value with field
animal. At line four, method setAnimal is called on c1 with
a Human object as parameter. At line five, method setAni-
mal is called on c2 with a Car object as parameter. Finally, at
line six, method walk is called on the animal field of object
cl. Atlines four and five, an object-insensitive approach would
consider c1 and c2 as the same receiver. The result would be
that the method calls at line four and six cannot distinguish be-
tween the receiver and model c1 and c2 as a unique object of
type Contains. Thus, method walk called at line six is rep-
resented by two methods in the call graph: Human.walk and
Cat.walk. On the other hand, an object-sensitive approach
would have model c1 and c2 separately for each call of se-
tAnimal. Thus, the call at line six would only be represented
by method Human . walk in the call graph.

2.2. Static Analysis of Android Programs

Android apps are mainly built around one or several of the
four (4) types of components whose possible interactions are
illustrated in Figure[3|:

1. an Activity represents the visible part of Android apps,
i.e., the user interfaces;

2. aService, which is dedicated to executing (time-intensive)
tasks in the background;

3. aBroadcast Receiver waits to receive user-specific events
as well as system events (e.g., the phone is rebooted);

4. a Content Provider acts as a standard interface for other
components/apps to access structured data.

startActivity(intent) :] Android App
Activity1 Activity2
P C) Component
" £ g s
Service Broadcast Content — Explicit ICC
Receiver Provider
----» Implicit ICC

Figure 3: Overview of basic concepts of Android apps.

Android components communicate with one another through
specific methods, such as startActivity(), which are used to trig-
ger inter-component communications (ICC). ICC methods take
an Intent object as a parameter (except Content Provider-related
ICC methods) which includes information about the target com-
ponent that the source component wants to communicate with.
There are two types of ICC interactions: explicit ICC where the
intent object contains the name of the target component, and
implicit ICC where the intent object specifies instead the capa-
bility/action that the target component must have (e.g., a web
browser to open a url). In order for a component to be consid-
ered as a potential target of an implicit ICC, it must specify an
Intent Filter in its Manifest configuration file, declaring what
kind of Intents it is capable of handling, i.e., what kind of ac-
tions it can perform.

2.2.1. Android-specific Analysis Challenges
We now enumerate some challenges for static analysis that
are mainly due to Android peculiarities.

Dalvik bytecode. Android apps are primarily developed in Java,
but are compiled into Dex bytecode that runs in Dalvik virtual
machine (now ART), which features a register-based instruction
model. Although, there existing open-source repositories where
many apps source code is shared, developers use official/com-
mercial markets to distribute their APKs. Thus, in practice, a
static analyzer for Android must be capable of directly tack-
ling Dalvik bytecode, or at least of translating it to a supported
format. Thus, most Java source code and bytecode analyzers,
which could have been leveraged, are actually useless in the
Android ecosystem. As an example, the mature FindBugsE] tool,
which has demonstrated its capabilities to discover bugs in Java
bytecode, can not readily be exploited for Android programs,
since an additional step is required to transforms Android APKs
into Java Jars.

Program entry point. Unlike programs in most general pro-
gramming languages such as Java and C, Android apps do not
have a main method. Instead, each app program contains sev-
eral entry points which are called by the Android framework at
runtime. Consequently, it is tedious for a static analyzer to build
a global call graph of the app. Instead, the analyzer must first
search for all entry-points and build several call graphs with no
assurance on how these graphs may connect to each other.

Shttp://findbugs.sourceforge.net

Component Lifecycle. In Android, unlike in Java or C, dif-
ferent components of an application, have their own lifecycle.
Each component indeed implements its lifecyle methods which
are called by the Android system to start/stop/resume the com-
ponent following environment needs. For example, an appli-
cation in the background (i.e., invisible lifetime), can first be
stopped, when the system is under memory pressure, and later
be restarted when the user attempts to put it in the foreground.
Unfortunately, because these lifecycle methods are not directly
connected to the execution flow, they hinder the soundness of
some analysis scenarios.

User/System Events. Besides lifecycle methods, methods for
handling user events (e.g., Ul actions) and system events (e.g.,
low memory event, GPS location changes event [20]]) constitute
a challenge for static analysis of Android apps. Indeed, as such
events can be fired at any time, static analysers cannot build
and maintain a reliable model of the events [21]]. It is further
expensive to consider all the possible variants of a given model,
due to limited resources [22} 23]]. Nevertheless, not taking into
account paths that include event-related methods may render
some analysis scenarios unsound.

Inter-Component Communication (ICC). Android has put in
place a specific mechanism for allowing an application’s com-
ponents to exchange messages through the system to compo-
nents of the same application or of other applications. This
communication is usually triggered by specific methods, here-
after referred to as ICC methods. ICC methods use a special pa-
rameter, containing all necessary information, to specify their
target components and the action requested. Similarly to the
lifecycle methods, ICC methods are actually processed by the
system who is in charge of resolving and brokering it at run-
time. Consequently, static analyzer will find it hazardous to
hypothesize on how components connect to one another unless
using advanced heuristics. As an example, FlowDroid, one of
the most-advanced static analyzers for Android, fails to take
into account ICCs in its analysis.

Libraries. An Android apk is a standalone package containing
a Dalvik bytecode consisting of the actual app code and all li-
brary suites, such as advertisement libraries and burdensome
frameworks. These libraries may represent thousands of lines
of code, leading to the size of actual app to be significantly
smaller than the included libraries. This situation causes two
major difficulties: (1) the analysis of an app may spend more
time vetting library code than the real code; (2) the analysis re-
sults may comprise too many false positives due to the analysis
of library “dead code”. As an example, analyzing all method
calls in an apk to discover the set of permissions required may
lead to listing permissions which are not actually necessary for
the actual app code.

2.2.2. Java-inherited Challenges
Since Android apps are mainly written in Java, develop-
ers of static analyzers for such apps are faced with the same

challenges as with Java programs, including the issues of han-
dling dynamic code loading, reflection, native code integration,
multi-threading and the support of polymorphism.

Reflection. In the case of dynamic code loading and reflec-
tive calls, it is currently difficult to statically handle them. The
classes that are loaded at runtime are often practically impossi-
ble to analyze since they often sit in remote locations, or may
be generated on the fly.

Native Code. Addressing the issue of native code is a different
research adventure. Most of the time, such code comes in a
compiled binary format, making it difficult to analyze.

Multi-threading. Analyzing multi-threaded programs is chal-
lenging as it is complicated to characterize the effect of the in-
teractions between threads. Besides, to analyze all interleavings
of statements from parallel threads usually result in exponential
analysis times.

Polymorphism. Finally, polymorphic features also add extra
difficulties for static analysis. As an example, let us assume
that method m; of class A has been overridden in class B (B
extends A). For statement a.m;(), where a is an instance of A, a
static analyzer in default will consider the body of m;() in A in-
stead of the actual body of m,() in B, even if a was instantiated
from B (e.g., with A a = new B()). This obvious situation is
however tedious to resolve in practice by most static analyzers
and thus leads to unsound results.

3. Methodology for the SLR

The methodology that we followed for this SLR is based
on the guidelines provided by Kitchenham [24] and which have
already been used by other SLRs [25]. Figure []illustrates the
protocol that we have designed to conduct the SLR:

e In a first step we define the research questions motivating
this SLR, and subsequently identify the relevant informa-
tion to collect from the publications in the literature (cf.
Section [3.1)).

e Then, we enumerate the different search keywords that
will allow us to crawl the largest possible set of relevant
publications within the scope of this SLR.

e The search process itself is conducted following two sce-
narios: the first one considers the well-known publication
repositories, while the second one focuses on the lists of
publications from top venues, including both conferences
and journals (cf. Section[3.2).

e To limit our study to very relevant papers, we apply ex-
clusion criteria on the search results, thus filtering out
papers of likely limited interest (cf. Section[3.3).

e Then we merge the sets of results from both search sce-
narios to produce the overall list of publications to re-
view. We further consolidate this list by applying another
set of exclusion criteria based on the content of the pa-
pers’ abstracts (cf. Section[3.3).

o Finally, we perform a lightweight backward-snowballing
on the selected publications, the final list of papers is
hereafter referred to as primary publications/studies (cf.
Section[3.4)).

Given the high number of publications relevant to the sys-
tematic literature review that we undertake to conduct, we must
devise a strategy of review which guarantees that each publi-
cation is investigated thoroughly and that the extracted infor-
mation is reliable. To that end, we further proceed with the
following steps:

e First, we assign the primary publications to the authors
of this SLR who will share the heavy workload of paper
examinations.

o Then, each primary publication is fully reviewed by the
SLR author to whom it was attributed. Based on their re-
views, each SLR author must fill a common spreadsheet
with relevant information in categories that were previ-
ously enumerated.

e To ensure that the review information for a given paper
is reliable, we first cross-check these reviews among re-
viewers. Then, once all information is collected, we en-
gage in a self-checking process where we forward our
findings to the authors of the reviewed papers. These
authors then confirm our investigation results or demon-
strate any inaccuracies in the classifications.

o Eventually, we report on the findings to the research com-
munity.

3.1. Research Questions

This SLR aims to address the following research questions:

RQ1: What are the purposes of the Analyses? With this
research question, we will survey the various issues targeted by
static analysis, i.e., the concerns in the Android ecosystem that
researchers attempt to resolve by statically analyzing app code.

RQ2: How are the analyses designed and implemented?
In this second research question, we study in detail the depth
of analysis that are developed by researchers. To that end, we
investigate the following sub-questions:

RQ 2.1: What code representations are used in the analysis
process? To facilitate analysis with existing frameworks, anal-
yses often require that the app byte code be translated back to
Java or other intermediate representations.

RQ 2.2: What fundamental techniques are used by the com-
munity of static analysis of Android apps?

RQ 2.3: What sensitivity-related features are applied?

RQ 2.4: What Android-specific characteristics are taken
into account?

RQ3: Are the research outputs publicly available? With
this research question, we are interested in investigating whether
the developed tools are readily available to practitioners and/or
the reported experiments can be reproduced by other researchers.
For each technical contribution, we check that the data sets used

Repository
search

Keywords
identification

RQ
identification

Apply
exclusion
criterion 3

Cross
checking

Apply
exclusion
criteria 4-8

Backward
Snowballing

Apply
exclusion
criterion 3

.

Data
Extraction

SLR Cross
report checking

e

Primary Papers Primar
publications split y ublicatigns
(subset) P P

Figure 4: Overview of our SLR process.

in the validation of approaches are available, and that the exper-
imental protocol is described in detail.

RQ4: What challenges remain to be addressed? Finally,
with this fourth research question we survey the issues that have
not yet benefited from a significant research effort. To that end,
we investigate the following questions:

RQ 4.1: To what extent are the enumerated analysis chal-
lenges covered? We survey the proportion of research approaches
that account for reflective calls, native code, multi-threading,
etc.

RQ 4.2: What are the trends in the analyses? We study
how the focus of researchers evolved over time and whether
this correlates with the needs of practitioners.

3.2. Search Strategy

We now detail the search keywords and the datasets that we
leveraged for the search of our relevant publications.

3.2.1. Search keywords

Thanks to the research questions outlined in Section[3.1] we
can summarize our search terms with keywords that are (1) re-
lated to analysis activities, or (2) related to key aspects of static
analysis, and (3) to the target programs. Table|l|depicts the ac-
tual keywords that we used based on a manual investigation of
some relevant publications.

Table 1: Search keywords

Line | Keywords

1 Analysis; Analyz*; Analys*;

2 Data-Flow; “Data Flow*”; Control-Flow; “Con-
trol Flow*”; “Information-Flow*”; “Information
Flow*”’; Static*; Taint;

3 Android; Mobile; Smartphone*; “Smart Phone*”’;

Our search string s is formed as a conjunction of the three
lines of keywords, i.e., s =: {; AND [/, AND /3, where each
line is represented as a disjunction of its keywords, e.g., [} =:
{Analysis OR Analyz* OR Analys*}.

3.2.2. Search datasets

As shown in Fig.[d] our data search is based on repositories
and is complemented by a check against top venues in soft-
ware engineering and security. Repository search is intended
for finding the relevant publications, while the top venue check
is used only as an additional checking process, to ensure that
the repository search did not miss any major publication. In the
following, we give more details of the two steps:

Repository Search. To find datasets of publications we first lever-
age five well-known electronic repositories, namely ACM Digi-
tal Libraryf’] IEEE Xplore Digital Library[} SpringerLink} Web
of Knowledge{[_;] and ScienceDirec@ Because in some cases the
repository search engine imposes a limit to the amount of search
result meta-data that can be downloaded, we consider, for such
cases, splitting the search string and iterating until we collect all
relevant meta-data of publications. For example, SpringerLink
only allows to collect information on the first 1,000 items from
its search results. Unfortunately, by applying our predefined
search string, we get more than 10,000 results on this reposi-
tory. Consequently, we must split our search string to narrow
down the findings and afterwards combine all the findings into
a final set. In other cases, such as with ACM Digital Library,
where the repository search engine does not provide a way to
download a batch of search results (meta-data), we resort to
python scripts to scale up the collection of relevant publications.

Top Venue Check. A few conference and journal venues, such
as the Network and Distributed System Security Symposium,
have policies (e.g., open proceedings) that make their publi-
cations unavailable in the previously listed electronic reposi-
tories. Thus, to ensure that our repository search results are,
to some extent, exhaustive, we consider all publications from
well-known venues. For this SLR we have considered the to;E-]
20 venues: 10 venues are from the field of software engineer-
ing and programming languages while the other 10 venues are

http://dl.acm.org

"http://ieeexplore.iecee.org

8nttp://link.springer.com

%http://apps.webofknowledge . com

O%http://www.sciencedirect.com

UFollowing Google Scholar Metrics: https://scholar.google.lu/
citations?view_op=top_venues&hl=en

http://dl.acm.org
http://ieeexplore.ieee.org
http://link.springer.com
http://apps.webofknowledge.com
http://www.sciencedirect.com
https://scholar.google.lu/citations?view_op=top_venues&hl=en
https://scholar.google.lu/citations?view_op=top_venues&hl=en

from the security and privacy field. Table [2]lists these venues
considered at the time of review (cf. Oct. 2015), where some
venues dealing with fundamental cryptography (including EU-
ROCRYPT, CRYPTO, TCC, CHES and PKC), parallel pro-
gramming (PPoPP), as well as magazines (such as IEEE Soft-
ware) and non-official proceedings (e.g., arXiv Cryptography
and Security) are excluded. Indeed, such venues are not the
main focus of static analysis of Android apps. The H5-index
in Table [2] is defined by Google Scholar as a special h-index
where only those of its articles published in the last 5 complete
calendar years (in our case is from 2010 to 2014) are consid-
ered. The h-index of a publication is the largest number h such
that at least h articles in that publication were cited at least h
times each [26]. Intuitively, the higher H5-index, the better the
venue.

Our top 20 venues check is performed on DBLP[T_ZI We only
use such keywords that are listed in line 3 in Table [I] for this
search, as DBLP provides papers’ title only, it is not necessary
for us to use the same keywords that we use in the repository
search step. Ideally, all the papers that are related to smart-
phones (including Android, Windows, iOS and so on) are taken
into account. As a result, this coarse-granularity strategy has in-
troduced some irrelevant papers (e.g., papers that analyze iOS
apps). Fortunately, because of the small number of venues, we
are able to manually exclude those irrelevant papers from our
interesting set, more details are given in the next section.

3.3. Exclusion Criteria

The search terms provided above are purposely broad to
allow the collection of a near exhaustive list of publications.
However, this broadness also suggests that many of the search
results may actually be irrelevant and focus on the primary pub-
lications. For our SLR we use the following exclusion criteria:

1. First to account for the common language spoken by the
reviewers, and the fact that most of today’s scientific works
are published in English, we filter out non-English writ-
ten publications.

2. Second, we want to focus on extensive works with de-
tailed publications. Thus, we exclude short papers, i.e.,
heuristically, papers with less than 7 pages in LNCS single-
column format or with less than 5 pages in IEEE/ACM-
like double-column format. Further, it should be noted
that such papers are often preliminary work that are later
published in full format and are thus likely to be included
in the final set.

3. Third, related to the second exclusion criteria, we attempt
to identify duplicate papers for exclusion. Usually, those
are papers published in the context of a conference venue
and extended to a journal venue. We look for such papers
by first comparing systematically the lists of authors, pa-
per titles and abstract texts. Then we manually check that
suspicious pairs of identified papers share a lot of content

Zhttp://dblp.uni-trier.de

or not. When duplication is confirmed we filter out the
less extensive publication.

4. Fourth, because our search terms include “mobile” to col-
lect most papers, the collected set includes papers about
“mobile networking” or i0OS/Windows platforms. We ex-
clude such non Android-related papers. This exclusion
criterion allows to remove over half of the collected pa-
pers, now creating the opportunity for an acceptable man-
ual effort of assessing the relevancy of remaining papers.

5. Fifth, we quickly skim through the remaining papers and
exclude those that target Android but do not deal with
static analysis techniques. For example, publications about
dynamic analysis/testing of Android apps are excluded.

Since Android has been a hot topic in the latest years, the
set of relevant papers constituted after having applied the above
exclusion criteria is still large. These are all papers that propose
approaches relevant to Android, based on static analysis of the
apps. We have noticed that some of the collected papers 1)
do not contribute to the research on static analysis of Android
apps, or 2) simply grep or match API names. For example,
some approaches simply read the manifest file to list permis-
sions requested, or simply attempt to match specific API names
in function calls. Thus, we devise four more exclusion criteria
to filter out such publications:

6. We exclude papers that statically analyze Android Op-
erating System (OS) rather than Android apps. Because
our main focus in this survey is to survey works related
to static analysis of Android apps. As examples, we have
dismissed PSCout [27] and EdgeMiner [28] in this pa-
per because they are dedicated to analysing the Android
framework.

7. We dismiss papers that do not actually parse the app pro-
gram code, e.g., research papers that only perform static
analysis on the meta-data (i.e., descriptions, configura-
tion files, etc.) of apps are excluded.

8. We filter out technical reports, such as SCanDroid [29]].
Such non-peer-reviewed papers are often re-published in
a conference and journal venue, and are thus likely to
be included in our search set with a different title and
author list. For example, the technical report paper on
IccTA [30] has eventually appeared in a conference pro-
ceeding [7], which was also collected.

9. We also dismiss papers that simply leverage the statement
sequences, or grep API names from the source/app code.
As an example, we exclude Juxtapp [31]], a clone detec-
tion approach, from consideration since it simply takes
opcode sequences for its static analysis.

Table 2: The top 20 venues including both conference proceedings and journals in SE/PL and S&P fields (Collected in Oct. 2015).

Acronym Full Name H5-index
Software Engineering and Programming Languages (SE/PL)
ICSE International Conference on Software Engineering 57
TSE IEEE Transactions on Software Engineering 47
PLDI SIGPLAN Conference on Programming Language Design and Implementation 46
IST Information and Software Technology 45
POPL ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages 45
JSS Journal of Systems and Software 41
FSE Foundations of Software Engineering 38
OOPSLA Conference on Object-Oriented Programming Systems, Languages, and Applications 34
ISSTA International Symposium on Software Testing and Analysis 31
TACAS International Conference on Tools and Algorithms for the Construction and Analysis of Systems 31
Security and Privacy (S&P)
CCS ACM Conference on Computer and Communications Security 65
S&P IEEE Symposium on Security and Privacy 53
SEC USENIX Security Symposium 51
TIFS IEEE Transactions on Information Forensics and Security 47
NDSS Network and Distributed System Security Symposium 39
TDSC IEEE Transactions on Dependable and Secure Computing 39
ASIACRYPT International Conference on The Theory and Application of Cryptology and Information Security 34
COMPSEC Computers & Security 34
ACSAC Computer Security Applications Conference 29
SOUPS USENIX Symposium On Usable Privacy and Security 29

Table 3: Summary of the selection of primary publications. The total number of searched publications are given only after the merge step.

Steps IEEE ACM Springer Elsevier = Web of Knowledge Top-20-venues Total
Search results 1,048 387 11,826 2,416 655 155 -
Scripts verification (with same keywords) 369 302 70 17 453 155 -
Scripts exclusion (criterion 3) 264 289 57 16 453 155 -
Merge 1123
After reviewing title/abstract (criteria 4 — 5) 302
After skimming full paper (criteria 6, 7 and 8) 142
After final discussion 118
Author recommendation +4
Backward Snowballing +2
Total 124

3.4. Backward Snowballing

As recommended in the guidelines of Kitchenham and Char-
ters [32], we perform a lightweightE] backward snowballing
from reference lists of the articles identified via repository search.
The objective is to find additional relevant papers in the litera-
ture that may have not been matched via our search keywords.

It is tedious and time-consuming to perform this step man-
ually. Thus, we leverage python scripts to automatically extract
references from our selected primary publications. In particu-
lar, we first leverage pdfﬁ to transfer a given paper from pdf to
text format. Then, we retrieve all the references from the pre-
viously generated text files. To further mitigate manual efforts,
we again use scripts to filter out references whose publication
date fall outside of our SLR timeline and whose titles appear
without keywords that are defined in the scope of this SLR.
After these steps, we manually read and check the remaining
references. If a given reference (paper) is in line with this work

13We only perform backward-snowballing once, meaning that the newly
found publications are not considered for snowballing.
]4https://github.com/metachris/pdfx

10

but is not yet available in our primary publication set, we then
include it into our final paper set.

3.5. Primary publications selection

In this section, we give details on our final selection results
of primary publications, which are summarized in Table 3]

The first two lines (search results and scripts verification)
provide statistics on papers found through the keywords defined
previously. In the first line, we focus on the output from the
repositories search (with full paper search, whenever possible,
because we want to collect as many relevant papers as possible
in this phase). Through this repositories search, we collect data
such as paper title or paper abstract. The second line shows the
results of an additional verification step on the collected data.
More specifically, we perform automated keywords search on
the data (with exactly the same keywords as the previous step).
We adopt this second step because of the flaws in “advanced”
search functionality of the five repositories, where the search
results are often inaccurate, resulting in a set noised by some
irrelevant papers. After performing the second step (line 2), the
number of potential relevant papers is significantly reduced.

The third line shows the results of applying our exclusion
criterion 3 (exclude short papers) for the results of line 2. The
only big difference happens in IEEE repository. We further look
into the publications of IEEE found that those short papers are
mostly 4 page conference papers with insufficient description
of their proposed approaches/tools. Therefore it makes sense
for us to remove those short papers from our list of papers to be
analyzed.

Line 4 merges the results of line 3 to one set in order to
avert for redundant workload (otherwise, a same paper in two
repositories would be reviewed twice). We have noticed that
the redundancy occurs in three cases:

1. The ACM repository may contain papers that were orig-
inally published in IEEE or Springer and

2. The Web of Knowledge repository may contain papers
that are published in Elsevier.

3. The five repositories may contain papers that appear in
the top-20-venues set.

After the merge step, we split the searched papers to all the
co-authors of this paper. We manually review the title/abstract
and examine the full content of the selected papers, with ap-
plying the exclusion criteria 4-8. With final discussion between
authors, we finally select 118 papers as primary publications.

For the self-checking process, we have collected 343 dis-
tinct email addresses of 419 authors for the 88 primary pub-
lications selected in our search ((up to May 2015)). We then
sent the SLR to these authors and request their help in check-
ing that their publications were correctly classified. Within a
week, we have received 25 feedback messages which we took
into account. Authors further recommended a total of 19 papers
to include in the SLR. 15 of them are already considered by our
SLR (from Jul. 2015 to Dec. 2015). The remaining 4 of those
recommended papers were found to be borderline with regards
to our exclusion criteria (e.g., dynamic approaches which resort
to some limited static analyses). We review them against our in-
clusion criteria and decide to include them (Table[3] line 8).

Regarding to the backward-snowballing, overall, we found
1815 referenced articles whose publication date fall within our
SLR timeline. Only 53 of these articles had titles without key-
words that could be matched by search. We reviewed these
papers and found that only 2 fit our criteria (i.e., deal with static
analysis in the context of Android apps).

In total, our SLR examines 124 publications, which are
listed in Table[A.12]and Table[A.T3] Fig.[|illustrates the distri-
butions of these publications by types(Fig [5a)) and publication
domains (Fig. [5b). Over 70% of our collected papers are pub-
lished in conferences. Workshops, generally co-located with
top conferences, have also seen a fair share of contributions on
Android static analysis. These findings are not surprising, since
the high competition in Android research forces authors to aim
for targets where publication process is fastest. Presentations
in conferences can also stimulate more collaborations as can
be seen in most recent papers on Android analysis. We further
find that half of the publications were made in Security venues

11

(a) Type. (b) Domain.
Figure 5: Statistics of examined publications. SE/PL stands for Soft-
ware Engineering/Programming Language, SEC stands for Security.

[7¢)]

VALWARE <2

_ B RAID
S 2 %E
Securecomm

ISFNIY |2 YlackH:
USENIX &3 caoBicou Blckilat
=< IHP

=

Mob

AINA

=

A FASE

¥ pLI

[HIPSEC

Internetware
HotPower

" WiSec NDSS
ESORICS ™

Figure 6: Word cloud of all the conference names of examined publi-
cations. Journal and workshop publications are not considered.

SOUPS

while another larger proportion was published in Software En-
gineering venues. Very few contributions were published in
other types of venues. MIGDroid [33]], published in the Net-
work domain and CloneCloud [34], published in the Systems
domain, are the rare exceptions. This finding comforts our ini-
tial heuristics of considering top venues in SE/PL and SEC to
verify that our repository search was exhaustive.

Fig. [shows a word cloud of the conference names where
our primary publications were presented. Most of the reviewed
publications are from top conference venues (e.g., ICSE, NDSS
and CCS), suggesting that our study has at least considered the
important relevant works.

4. Data Extraction

Once relevant papers have been collected, we build a taxon-
omy of the information that must be extracted from each paper
in order (1) to cover the research questions enumerated above,
(2) to be systematic in the assessment of each paper, and (3) to
provide a baseline for classifying and comparing the different
approaches. Fig. [/| overviews the information extracted from
the selected publications.

Targeted Problems. Approaches are also classified on the
targeted problems. Examples of problems include privacy leak-
age, permission management, energy optimization, etc.

Fundamental Techniques. This dimension focuses on the
fundamental techniques adopted by examined primary publi-

—> Targeted Problems
—»| Fundamental Techniques
Publications » Static Analysis Features
—»| Android Characteristics
| Evaluation Methods

Figure 7: Overview of information extracted from a given primary
publication.

cations. The fundamental techniques in this work include not
only such techniques like faint analysis and program slicing
that solve problems through different means but also the exist-
ing tools such as Soot [12] or WALA [13] that are leveraged.

Static Analysis features. This dimension includes static
analysis related features. Given a primary publication, we would
like to check whether it is context-sensitive, flow-sensitive, path-
sensitive, object-sensitive, field-sensitive, static-aware, implicit-
flow-aware, alias-aware. Besides, in this dimension, the dy-
namic code loading, reflection supporting, native code support-
ing are also inspected.

Android Characteristics. This dimension includes such
characteristics that are closely related to Android such as ICC,
IAC (Inter-App Communication), Framework and so on. Ques-
tions like “Do they take care of the lifecycle or callback meth-
ods?” or “Do the studied approaches support ICC or IAC?” be-
long to this dimension.

Evaluation methods. This dimension focuses on the evalu-
ation methods of primary publications, intending to answer the
question how their approaches are evaluated. To this end, this
dimension will count whether their approaches are evaluated
through in-the-lab apps (i.e., artificial apps with knowing the
ground truth in advance) or in-the-wild apps (i.e., the real-world
apps). Questions like how many in-the-wild apps are evaluated
are also addressed in this dimension.

5. Summary of Findings

In this section, we report on the findings of this SLR in light
of the research questions enumerated in Section

5.1. Purposes of the Analyses

In the literature of Android, static analysis has been applied
for achieving various tasks. Among others, such analyses are
implemented to highlight various security issues (such as pri-
vate data leaks or permission management concerns), to ver-
ify code, to compare apps for detecting clones, to automate the
generation of test cases, or to assess code efficiency in terms of
performance and energy consumption. We have identified 8 re-
curring purposes of Android-targeted static analysis approaches
in the literature. We detail these purposes and provide statistics
of approaches which target them.

12

Private Data Leaks. Recently, concerns on privacy with
Android apps have led researchers to focus on the private data
leaks. FlowDroid [6], introduced in 2014, is probably the most
advanced approach addressing this issue. It performs static taint
analysis on Android apps with a flow-, context-, field-, object-
sensitive and implicit flow-, lifecycle-, static-, alias-aware anal-
ysis, resulting in a highly precise approach. The associated tool
has been open-sourced and many other approaches [35] 136, 37|
38, [7] have leveraged it to perform more extensive analysis.

Vulnerabilities. Security vulnerabilities are another con-
cern for app users who must be protected against malware ex-
ploiting the data and privileges of benign apps. Many of the
vulnerabilities addressed in the literature are related to the ICC
mechanism and its potential misuses such as for component hi-
jacking (i.e., gain unauthorised access to protected or private
resources through exported components in vulnerable apps) or
intent injection (i.e., manipulate user input data to execute code
through it). For example, CHEX [8] detects potential com-
ponent hijacking-based flows through reachability analysis on
customized system dependence graphs. Epicc [9]] and IC3 [39]
are tools that implement static analysis techniques for imple-
menting detection scenarios of inter-component vulnerabilities.
Based on these studies, PCLeaks [38] goes one step further by
performing sensitive data-flow analysis on top of component
vulnerabilities, enabling it to not only know what is the issue
but also to know what sensitive data will leak through that is-
sue. Similarly to PCLeaks, ContentScope [40] detects sensitive
data leaks focusing on Content Provider-based vulnerabilities
in Android apps.

Permission Misuse. Permission checking is a pillar in the
security architecture of Android. The Android permission-based
security model associates sensitive resources with a set of per-
missions that must be granted before access. However, as shown
by Bartel et al. [41} 42], this permission model is an intrinsic
risk, since apps can be granted more permissions than they ac-
tually need. Malware may indeed leverage permissions (which
are unnecessary to the core app functionality) to achieve their
malicious goals. PSCout [27] is currently the most extensive
work that dissects the Android permission specification from
Android OS source code using static analysis. However, we do
not take PSCout into consideration in this SLR as our focus is
static analysis of Android apps rather than Android OS.

Energy Consumption. Battery stand-by time has been a
problem for mobile devices for a long time. Larger screens
found in modern smartphones constitute the most energy con-
suming components. As shown by Li et al. [43]], modern smart
phones use OLED, which consumes more energy when dis-
playing light colors than dark colors. In their investigation,
the energy consumption could be reduced by 40% if more ef-
ficient web pages are built for mobile systems (e.g., in dark
background color). To reach this conclusion, they performed
extensive program analysis on the structure of web apps, more
specifically, through automatically rewriting web apps so as to
generate more efficient web pages. Li et al. [44] present a tool
to calculate source line level energy consumption through com-
bining program analysis and statistical modeling. The output
of these analyses can then be leveraged to perform quantitative

and qualitative empirical investigations into the categories of
API calls and usage patterns that exhibit high energy consump-
tion profiles [45]].

Clone Detection. Researchers have also leveraged static
analysis to perform clone detection of Android apps. Indeed,
as presented by Ruiz et al. [46, 47], who have conducted a
large scale empirical study, app clone is very common in mo-
bile apps. Towards taming app clones, several works such as
DNADroid [48] and AnDarwin [49] have been provided by
the community to detect cloned apps. Recently, studies have
further shown that it is also necessary for clone detection ap-
proaches to consider the context of code obfuscation and library
usages [50L 51]], so as to improve their accuracy.

Test Case Generation. The pervasiveness of Android apps
have underlined the need for applicable automated testing tech-
niques. Test case generation aims to provide a set of executable
test cases, which can be leveraged to support automatic and re-
peatable testings. A common means to generate test cases is
to conduct symbolic execution on source code with the guide
of some pre-extracted models, so as to ensure the reachability
of certain branches. For example, SIG-Droid [52], a framework
for system testing of Android apps, automatically generates test
cases through symbolic execution with two models: Inferface
Model, which is leveraged to find values that a given app can
receive and Behavior Model, which is used to generate the se-
quences of events in order to drive the symbolic execution.

Code Verification. Code verification intends to ensure the
correctness of a given app. For instance, Cassandra [S3] is pro-
posed to check whether Android apps comply with their per-
sonal privacy requirements before installing an app. As another
example, researchers have also extended the Julia [4] static an-
alyzer to perform code verification through formal analyses of
Android programs.

Cryptography Implementation Issues. In addition to the
aforementioned concerns, state-of-the-art works have also tar-
geted the cryptography implementation issues. As an example,
CryptoLint [54] leverages program analysis techniques to auto-
matically check apps hosted on the official Google Play store. It
finds that 10,327 out of 11,748 apps (nearly 88%) that use cryp-
tographic APIs have made at least one mistake, demonstrating
that cryptographic APIs are not used in a fashion way that max-
imize the overall security of apps.

Table] enumerates approaches from our primary publica-
tions which fall into the 8 purposes described above. The sum-
mary statistics in Fig. [8] show that Security concerns are the
focus of most static analysis approaches for Android. Energy
efficiency is also a popular concern ahead of program correct-
ness.

RQ 1: Static analysis is largely performed on Android
programs to uncover security and privacy issues.

5.2. Form and Extent of Analysis

We now investigate how the analyses described in the lit-
erature are implemented. In particular, we study the support
tools that they leverage (Section [5.2.I), the fundamental anal-
ysis methods that they apply (Section [5.2.2), the sensitivities

13

0 10 20 30 40

46
— 40
I 15

.

. 7

I s

| K]

K]

50

Leaks
Vulnerability
Permission
Energy

Clone

Test Generation
Cryptography
Code Verification

Figure 8: Statistics of main concerns addressed by the publications.

supported by their analysis (Section [5.2.3)) as well as the An-
droid peculiarities that they deal with (Section [5.2.4).

5.2.1. Code Representations and Support Tools

Table [5] enumerates the recurrent tools that are used by ap-
proaches in the literature to support their analyses. Such tools
often come as off-the-shelf components that implement com-
mon analysis processes (e.g., for the translation between byte-
code forms or for the automatic construction of call-graphs).
The table also provides for each tool information on the inter-
mediate representation (IR) that it deals with. The IR is a sim-
plified code format to represent the original Dalvik bytecode
and facilitate processing since Android Dalvik itself is known
to be complex and challenging to manipulate. Finally, the ta-
ble highlights the usage of such tools in specific reviewed ap-
proaches.

Table [6] goes into more details into the adoption of the dif-
ferent code representations by the examined approaches. Fig.[9]
summarizes the frequency of usages, where Jimple, which is
used by the popular Soot tool, appears as the most used IR fol-
lowed by the Smali intermediate representation, which is used
by Apktool.

0 s
— 38
I 26
I -2
By
waLa_IR [2

orner M 5

10 15 20 25 30 35 40

JIMPLE
SMALI
JAVA_CLASS

DEX_ASSEMBLER

Figure 9: Distribution of code representations used by examined pub-
lications.

RQ 2.1: The Soot framework and the Jimple interme-
diate representation are the most adopted basic support
tool and format for static analysis of Android apps.

5.2.2. Fundamental Analysis Methods
While all reviewed approaches build on control-flow or data-
flow analyses, specific techniques are employed to enhance the

Table 4: Recurrent analysis Purposes and related Publications.

> 14 5 = I~ 5
s 0z § 8 g 5§ 7 £ 8 g
. 8 2 5 > 5 o S s £ Z & > 2 o O
i & £ 5§ 3 5 5§ 3 5 & EF £ 3 5 5§ 3
Tool]) & N S sl (@) £ Tool 3 o & N o g o} IS
A3 [55] v DroidJust [56] v
A3E [57] v DroidSafe [58] v v v
AS [59] v DroidSIFT [60] v
AAPL [61] v v DroidSim [62] v
ACTEve [63 v EcoDroid [64 v
Adagio [65] v eLens [66] v
AdRisk [67] v Epicc [9] v
Amandroid [68] v v v FlowDroid [6] v
Anadroid [69] v v v FUSE [70] v v v
AnDarwin [49] v Gallingani et al. [71] v
AndRadar [[72 v Gible et al. [73] v
Androguard2 [74] v Graa et al. [75] v
Androguard [76 v v HelDroid [77 v
android-app-analysis-tool [78 v Hopper [79 v
AndroidLeaks [80] v v IccTA [7] v
Androlizer [81 v IFT [82 v
Apparecium [83] v Jensen et al. [84] v
AppAudit [85] v Julia [4] v
AppCaulk [86 v Lin et al. [87 v
AppContext [88] v Lu et al. [89] v
Applntent [90] v v MalloDroid [91] v
Apposcopy [92] v Mann et al. [93] v
AppSealer [94] v MIGDroid [33] v v
AsDroid [95] v MobSafe [96] v
Bartel et al. [42] v Nyx [43] v
Bartsch et al. [97] v PaddyFrog [98] v
Bastani et al. [99 v Pathak et al. [100
BlueSeal [1017 v v Pegasus [102] v
Brox [103] v PermissionFlow [[104] v v v
Capper [105] v Poeplau et al. [106] v
Cassandra [53] v v Redexer [107] v
Chen et al. [108] v Relda [109] v
Chen et al. [110] v SAAF [111] v v
CHEX [8] v v SADroid [112] v v
ClickRelease [113 v Scandal [114 v
CloneCloud [34] v SEFA [115] v v
CMA [116] v/ SIG-Droid [52] v/
ComDroid [117] v SmartDroid [118 v
ContentScope [119] v v SMV-Hunter [120] v
CORPES [41] v Sufatrio et al. [121] v
Cortesi et al. [122] v TASMAN [123] v
Covert [124] v v TrustDroid [125] v
CredMiner [126 v Uranine [127 v
CryptoLint [54] v Vekris et al. [128] v
DescribeMe [129] v vLens [44] v
DEvA [130 v W2AIScanner [131 v v
Dflow+DroidInfer [132] v Wang et al. [133] v
DidFail [36] v WeChecker [134] v
DNADroid [48 v Wognsen et al. [135 v
DPartner [136] v ‘Woodpecker [137] v
DroidAlarm [138 v v Zuo et al. [139 v
DroidChecker [140 v
Total 46 3 15 40 3 9 7 6
Others (Publications Without v')

ApkCombiner [141], AQUA [142], AsyncDroid [143], Asynchronizer [144], AutoPPG [145], Brahmastra [146], Choi et al. [147], EvoDroid [[148], Gator2 [149], Gator3 [[150], Gator [151],
I-ARM-Droid [152], IC3 [39], Lotrack [153], ORBIT [154], PerfChecker [155], Rocha et al. [156], SIF [157], StaDynA [158], THRESHER [159], Violist [160]

results and thus to reach the target purposes. In our study, we
have identified six fundamental techniques which are used, of-
ten in conjunction, in the literature.

Abstract Interpretation. Abstract interpretation is a the-
ory of approximating the semantics of programs, where sound-
ness of the analysis can be guaranteed and thereby to avoid
yielding false negative results. An abstract interpretation typ-
ically involves three artefacts: an abstract value, a flow func-
tion and an initial state. An abstract value is a set of concrete
values. For example, T could stand for the set of all integer val-
ues in a standard integer constant propagation analysis. A flow
function defines the abstract semantics of every statement type,

which usually takes as input a statement with an abstract state
and the output is the abstract state after executing the statement.
An abstract interpretation needs to maintain an interpreter state
and an initial state is needed to specify the point when inter-
pretation starts (a typical initial state from constant propaga-
tion is to set everything as 7). A concrete implementation of
abstract interpretation is through formal program analysis. As
an example, Julia [4]] is a tool that uses abstract interpretation
to automatically and statically analyze Java and Android apps
for the development of high-quality, formally verified products.
SCanDal [114], another sound and automatic static analyzer,
also leverages abstract interpretation to detect privacy leaks in

14

Table 5: List of recurrent support tools for static analysis of Android apps.

TOOL Brief Description IR Example Usages
Soot [12] A Java/Android static analysis and optimization framework JIMPLE, JASMIN FlowDroid [6], IccTA [7], AppIntent [90]
WAL A Java/Javascript static analysis framework WALA-IR (SSA-based) AsDroid [95]l, Asynchronizer [144], ORBIT [154]
Chord [161]] A Java program analysis platform CHORD-IR (SSA-based) CloneCloud [34]
Androguard [741176] Reverse engineering, malware/goodware analysis of Android DEX_ASSEMBLER MalloDroid [91]], Relda [109]
apps
Ded [162] A DEX to Java bytecode translator JAVA_CLASS Enck et al. [163]
Dare [164] A DEX to Java bytecode translator JAVA_CLASS Epicc 9], IC3 [39]
Dexpler [165] A DEX to Jimple translator JIMPLE BlueSeal [101])
Smali/Baksmalﬂ A DEX to Smali translator (and verse visa) SMALI Woodpecker [137], SEFA [L15]
Apktoo! A tool for reverse engineering Android apps SMALI PaddyFrog [98]], Androlizer [81]
dex2ja A DEX to Java bytecode translator JAVA_CLASS DroidChecker [140]], Vekris et al. [[128]
dedexef’| A disassembler for DEX files DEX_ASSEMBLER Brox [103], AQUA [142]
dexdump A disassembler for DEX files DEX_ASSEMBLER ScanDal [[114]
dx A Java bytecode to DEX translator DEX_ASSEMBLER EdgeMiner [28]
jd-gu A Java bytecode to source code translator (and also an IDE) JAVA_CLASS Wang et al. [133]
ASM [16611167] A Java manipulation and analysis framework JAVA_CLASS COPES [41]
BCE A library for analyzing and instrumenting Java bytecode JAVA_CLASS vLens [44], Julia [4], Nyx [43]
Redexer A reengineering tool that manipulates Android app binaries DEX_ASSEMBLER Brahmastra [146]

“http://wala.sourceforge.net
bhttp://baksmali.com
“http://ibotpeaches.github.io/Apktool/
https://github.com/pxb1988/dex2jar
http://dedexer.sourceforge.net
Thttps://github.com/java-decompiler/jd-gui
Shttps://commons.apache.org/bcel/

Table 6: A Summary of examined approaches through the code representations that they use.

Code Representation

Publications

WALA_IR

JIMPLE

DEX_ASSEMBLER

A3E [S7], AAPL [61], AnDarwin [49]], AndroidLeaks [80], AsDroid [95], Asynchronizer [144], CHEX [8]], DNADroid [48]],
Hopper [[79]], ORBIT [154], Poeplau et al. [106], THRESHER [159]

A5 [59], ACTEve [63], android-app-analysis-tool [78]], ApkCombiner [141], AppContext [88], ApplIntent [90], Ap-
poscopy [92], AppSealer [94], AutoPPG [145], Bartel et al. [42], Bastani et al. [99]], BlueSeal [101], Capper [105],
COPES [41]), Covert [124], DescribeMe [129], DEvA [130], DidFail [36]], DroidJust [56], DroidSafe [58], EcoDroid [64],
Epicc [9], FlowDroid [6], Gallingani et al. [71], Gator2 [149], Gator3 [150], Gator [151], HelDroid [77], IC3 [39], Ic-
c¢TA [7], Lotrack [153]], PerfChecker [155]], Sufatrio et al. [121]], TASMAN [123], Vekris et al. [128], Violist [160],
W2AIScanner [131], WeChecker [[134]

Adagio [65], AndRadar [72], Androguard2 [74], Androguard [76], AQUA [142], Brahmastra [146], Brox [103], Com-
Droid [117], CryptoLint [54], Dflow+DroidInfer [132], Lin et al. [87], MalloDroid [91], Mann et al. [93], Redexer [[107],
Relda [109]], Scandal [114], StaDynA [158]

A3 [55], AdRisk [67], Anadroid [69], Androlizer [81], Apparecium [83], AppCaulk [86], Chen et al. [108], ClickRe-

SMALI
lease [113[], CMA [116], ContentScope [119], CredMiner [126], DroidSim [62], I-ARM-Droid [152], Jensen et al. [84],
MIGDroid [33], MobSafe [96], PaddyFrog [98], SAAF [111], SADroid [112], SEFA [115], SmartDroid [118], SMV-
Hunter [120]], Uranine [127], Wognsen et al. [135]], Woodpecker [137]], Zuo et al. [139]

OTHER Amandroid [68], Cortesi et al. [122], FUSE [70], Nyx [43]], SIG-Droid [52]

JAVA_CLASS AppAudit [85], AsyncDroid [143], Bartsch et al. [97], Chen et al. [110], Choi et al. [147]], CloneCloud [34]], DPartner [136],
DroidAlarm [138]], DroidChecker [140], DroidSIFT [60], eLens [66], EvoDroid [148], IFT [82], Julia [4], Lu et al. [89],
Pathak et al. [100], Pegasus [102], PermissionFlow [[104]], SIF [[157], TrustDroid [125]], vLens [44], Wang et al. [[133]]

Android apps.

Taint Analysis. A taint analysis is a kind of information
flow analysis where objects are tainted and tracked using a data-
flow analysis. If a tainted object flows to a point where it should
not, i.e. a sink, then an alarm is raised. FlowDroid [6]], for
example, performs static taint analysis to detect sensitive data
leaks. Based on a predefined set of source and sink meth-
ods, which are automatically extracted from the Android SDK
(cf. SUSI [168]), sensitive data leaks are reported if and only
if the data are obtained from source methods (i.e., these data
are tainted) and eventually flow to sink methods (i.e., violate

15

security polices). As another example, AppSealer [94] lever-
ages taint analysis to automatically generate patches for An-
droid component hijacking attacks. When a tainted data is go-
ing to violate the predefined polices, AppSealer injects a patch
before the violation to alert the app user though a pop-up dialog
box.

Symbolic Execution. Symbolic execution is useful for gen-
erating possible program inputs, detecting infeasible paths, etc.
Typically, symbolic values are considered for inputs to propa-
gate the execution. Those symbolic values will be used to gen-
erate expressions and constraints that could be further leveraged

Table 7: Summary through the adoption of different fundamental techniques.

Techniques

Publications

Abstract Interpretation

Taint Analysis

Symbolic Execution

Program Slicing

Code Instrumentation

Type/Model Checking

Scandal [114],

TASMAN [123], W2AIScanner [131]

al. [156]], SAAF [LL1],

Percentag
Anadroid [69] Cortesi et al. [122], Hopper [79], Julia [4], Lu et al. [89]], Mann et al. [93], Rocha et al. [156], 6.5%
AAPL [61], Amandroid [68]], Anadroid [69]], AndroidLeaks [80], Apparecium [83], AppAudit [85], App- 30.6%
Caulk [86], AppContext [88], Apposcopy [92], AppSealer [94]], Bastani et al. [99], Brox [[103], Capper [105],
CHEX [8]], Cortesi et al. [122], CredMiner [126], DescribeMe [[129], Dflow+DroidInfer [132], DidFail [36],
DroidChecker [140]], DroidJust [56], DroidSafe [58], FlowDroid [6], FUSE [70], Gallingani et al. [71], Hel-
Droid [77], IccTA [7], Lotrack [153], Mann et al. [93], MobSafe [96]], PermissionFlow [104], SEFA [115],
Sufatrio et al. [121]], TASMAN [123]], TrustDroid [[125]], Uranine [127], W2AIScanner [131], WeChecker [134]
ACTEve [63]], AppIntent [90]], ClickRelease [113]], Gallingani et al. [71]], Jensen et al. [84]], SIG-Droid [52], 6.5%
AndroidLeaks [80], Apparecium [83], AppCaulk [86]], AppSealer [94], AQUA [142] Brox [[103], Capper [105], 12.1%
CredMiner [126], CryptoLint [54], eLens [66], Hopper [79], MobSafe [96], Poeplau et al. [L06], Rocha et
ACTEve [63] Androguard2 [74], android-app-analysis-tool [78], AppCaulk [86], AppSealer [94], Async- 18.5%
Droid [143]], Bastani et al. [99], Brahmastra [146], Capper [105], Cassandra [53], CMA [116], DidFail [36],
DroidSafe [58]], I-ARM-Droid [152], IccTA [7], Nyx [43], ORBIT [154], Rocha et al. [156], SIF [157], Smart-
Droid [118]], Sufatrio et al. [121], Uranine [[127]], vLens [44],
Choi et al. [147], Covert [124] Dflow+DroidInfer [132], DroidAlarm [138], IFT [82], Lu et al. [89]], Mann et 6.5%

al. [93]], SADroid [112],

“Some primary papers leverage basic data-flow analysis only and thus are not categorized, making the sum of percentages less than 100%.

(e.g., by a constraint solver) to produce possible inputs fulfill-
ing all the conditional branches inside the given path. Those
inputs can then be taken as test cases to explore the given path
for repeatable dynamic analysis. If no input is produced, the
given path is thus confirmed to be infeasible. As an example,
Applntent [90] uses symbolic execution to generate a sequence
of GUI manipulations that lead to data transmission. As the ba-
sic straightforward symbolic execution is too time-consuming
for Android apps, Applntent thus leverages the unique Android
execution model to reduce the search space without sacrificing
code coverage.

Program Slicing. Program slicing has been used as a com-
mon means in the field of program analysis to reduce the set of
program behaviors while keeping the interesting program be-
havior unchanged. Given a variable v in program p that we are
interested in, a possible slice would consist of all statements in
p that may affect the value of v. As an example, Hoffmann et
al. [111] present a framework called SAAF to create program
slices so as to perform backward data-flow analysis to track pa-
rameter values for a given Android method. CryptoLint [54]
computes static program slices that terminate in calls to crypto-
graphic API methods, and then extract the necessary informa-
tion from these slices.

Code Instrumentation. Static analysis is often necessary
to find sweet spots where to insert code for collecting runtime
behaviour data (cf. SIF framework [[157]). In recent works,
code instrumentation has also been employed to address chal-
lenges for static analysis in Android apps, including for artifi-
cially linking components for inter-component communication
detection [7]], or replacing reflection calls with standard java
calls so as to reduce incomplete analyses due to broken control-
flows [[169]]. In Android community, Arzt et al. [170] have in-

16

troduced several means to instrument Android apps based on
Soot. As an example, IccTA [7] instruments Android apps
to reduce an inter-component taint propagation problem to an
intra-component problem. Nyx [43] instruments an Android
web app to modify the background of web pages, so as to re-
duce the display power consumption and thereby letting web
app become more energy efficient. Besides Soot [12], other
tools/frameworks such as WALA [13]] and ASM [166]] are also
able to support instrumentation of Android apps.

Type/Model Checking. Type and model checking are two
prevalent approaches to program verification. Type checking,
which can occur at compile/execution time (i.e., static/dynamic
type checking), is the process of verifying type constraints of
a program. The goal of type checking is to ensure that a given
program is type-safe where the possibility of type errors (e.g.,
a float operation is performed on an integer or an integer oper-
ator is applied to strings) is kept to a minimum [171]. Model
checking is the process of verifying whether a finite-state sys-
tem has met a given specification [172]. The main difference
between type and model checking is that type checking is usu-
ally based on syntactic and modular style whereas model check-
ing is usually defined in a semantic and whole-program style.
Actually, this difference makes these two approaches comple-
mentary to one another: type checking is good at explaining
why a program was accepted while model checking is good
at explaining why a program was rejected [173]. As an ex-
ample, COVERT [124] first extracts relevant security specifica-
tions from a given app and then applies a formal model check-
ing engine to verify whether the analyzed app is safe or not.
For type checking, Cassandra [53] is presented to enable users
of mobile devices to check whether Android apps comply with
their personal privacy requirements even before installing these

apps. Ernst et al. [82] also present a type checking system for
Android apps, which checks the information flow type quali-
fiers and ensures that only such flows defined beforehand can
occur at run time.

Table [/| provides information on the works that use differ-

ent techniques. The summary statistics show that taint analysis,
which is used for tracking data, is the most applied technique
(30.6% of primary publications), while 18.5% primary publi-
cations involve code instrumentation and 12.1% primary pub-
lications have applied program slicing technique in their ap-
proaches. Type/Model checking, abstract interpretation, and
symbolic execution account each for 6.5% of the primary pub-
lications.
RQ 2.2: Taint analysis remains the most applied tech-
nique in static analysis of Android apps. This is in line
with the finding in RQ1 which shows that the most recur-
rent purpose of state-of-the-art approaches is on security
and privacy.

5.2.3. Static Analysis Sensitivities

We now investigate the precision of the analyses presented
in the primary publications. To that end we assess the sensitiv-
ities (cf. Sections [2.1.2] and 2.1.3). Table [§] classifies the dif-
ferent approaches according to the sensitivities that their anal-
yses take into account. Field-sensitivity appears to be the most
considered with 48 primary publications taking it into account.
This finding is understandable since Android apps are gener-
ally written in Java, an Object-Oriented language where object
fields are pervasively used to hold data. Context-sensitivity and
Flow-sensitivity are also largely taken into account (with 42 and
40 publications respectively). The least considered sensitivity is
Path-sensitivity (only 6 publications), probably due to the scal-
ability issues that it raises.

In theory, the more sensitivities considered, the more pre-
cise the analysis is. Indeed, as shown by Arzt et al. [6], the
authors of FlowDroid, who claimed that the design of being
context-, flow-, field-, and object-sensitive maximizes preci-
sion and recall, i.e., aims at minimizing the number of missed
leaks and false warnings. Livshits et al. [174, [175] also stated
that both context-sensitivity and path-sensitivity are necessary
to achieve a low false positive rate (i.e., higher precision). It
is thus reasonable to state that only two approaches, namely
TRESHER [159] and Hopper [79]], achieves high precision by
taking into account all sensitivities. However, given the rela-
tively high precision of other state-of-the-art works, it seems
unnecessary to support all sensitivities to be useful in practice.

RQ 2.3: Most approaches support up to 3 of the 5 sen-
sitivities for static analysis. Path-sensitivity is the least
taken into account by the Android research community.

5.2.4. Android Specificities

Although Android apps are written in Java, they present
specific characteristics in their functioning. Typically, they ex-
tensively make use of a set of lifecycle event-based methods
that the system requires to interact with apps, and rely on the

17

inter-component communication mechanism to make applica-
tion parts interact. These characteristics however may consti-
tute challenges for a static analysis approach.

Component Lifecycle. Because lifecycle callback meth-
ods (i.e., onStop(), onStart(), onRestart(), onPause() and onRe-
sume()) have neither connection among them nor directly with
app code, it is challenging for static analysis approaches to build
control-flow graphs (e.g., to continuously keep track of sensi-
tive data flows). We found that 57 of the reviewed publications
propose static analysis approaches that take into account com-
ponent lifecyle.

UI Callbacks. Besides lifecycle methods, a number of call-
backs are used in Android to handle various events. In particu-
lar, UI events are detected by the system and notified to devel-
oper apps through callback methods (e.g., to react when a user
clicks on a button). There are several such callbacks defined
in various Android classes. Similarly to lifecycle methods, tak-
ing into account such callback methods leads to a more com-
plete control-flow graph. Our review reveals that 64 of publica-
tions are considering specific analysis processes that take into
account callback methods.

EntryPoint. Most static approaches for Android apps must
build an entry point, in the form of a dummy main, to allow the
construction of call-graph by state-of-the-art tools such as Soot
and WALA. 74 publications from our set explicitly discussed
their handling of the single entry-point issue.

ICC. The inter-component communication (ICC) is well-
know to challenge static analysis of Android programs. Re-
cently, several works have focused on its inner-working to high-
light vulnerabilities and malicious activities in Android apps.
Among the set of collected primary publications, 30 research
papers explicitly deal with ICC. As examples, Epicc [9]] and
IC3 [39] attempt to extract the necessary information of ICC
in Android apps which can support other approaches, including
IccTA [7]], and DidFail [36]], in performing ICC-aware analyses
across components. AmanDroid [68] also resolves ICC infor-
mation for supporting inter-component data-flow analysis, for
the purpose of vetting the security of Android apps.

TAC. The inter-app communication (IAC) mechanism ex-
tends the ICC mechanism for components across different apps.
Because, most approaches focus on analysing single apps, IAC-
supported analyses are scarce in the literature. We found only
6 publications that deal with such scenarios of interactions. A
main challenge of tackling IAC-aware analyses is the support
of scalability for market-scale analyses.

XML-Layout. The structure of user interfaces of Android
apps are defined by layouts, which can be declared in either
XML configurations or Java code. The XML layout mecha-
nism provides a well-defined vocabulary corresponding to the
View classes, sub-classes and also their possible event han-
dlers. We found that 30 publications, from our set, take into ac-
count XML layouts to support more complete analysis scenar-
ios. Mostly, those analyses consist in tracking callback meth-
ods indicated in XML files but which are not explicitly reg-
istered in the app code. Consider for example the code snip-
pets in Listing[T] where we provide two distinct, but equivalent,
implementations for registering a listener to a layout Button.

Table 8: Classification of Approaches according to the Sensitivities considered.

o 4
§ L L f§0 & § L L .'@@ 3
& F F g N & § § &N N
=) IS I O 2 & & &) <
K N Y S N & & 3 g 7
§ S ey > 5 N S ey > N
Tool O & & 8 i Tool O & o S ¢
A3E [57 v DPartner [136 v
AAPL [61] v v v v DroidJust [56] v v v v
Amandroid [68] v v v v DroidSafe [38] v v v v
Anadroid [69] v v v v DroidSIFT [60] v v
AndroidLeaks [80 v Epice [9 v v v
Apparecium [83] 4 v v FlowDroid [6] v v v v
AppAudit [85] v FUSE [70] v v
AppCaulk [86] v v Gator?2 [149] v v
AppContext [88 v v v v Gator3 [150 v v
Apposcopy [92] v v v Gator [151] v v
AppSealer [94] v v v HelDroid [77] v v v v
AQUA [142] v Hopper [79] v v v v v
AsDroid [95 v v v 1C3 [39 v v v
Asynchronizer [144] v v IccTA [7] v v v v
Bartel et al. [42] v v IFT [82] v v v
Bartsch et al. [97] v v Julia [4] v
Bastani et al. [99 v Lotrack [153 v v v v
Brox [103] v v Mann et al. [93] v
Capper [105] v v v Pegasus [102] v v v
Cassandra [53] v PermissionFlow [104] v v v
Chen et al. [110 v Rocha et al. [156 v
CHEX [8] v v v v Scandal [114] v v
Choi et al. [147] v SEFA [115] v
CloneCloud [34] v Sufatrio et al. [121] v v v v
ComDroid [117 v TASMAN [123 v v v v
ContentScope [119] v THRESHER [159] v v v v v
COPES [41] v v TrustDroid [125] v
Covert [124] v v Vekris et al. [128] v v
CredMiner [126] v Violist [160] v v
CryptoLint [54] v ‘W2AIScanner [131] v v v
DescribeMe [129] v v v v WeChecker [134] v v v v
Dflow+DroidInfer [132] v v v Wognsen et al. [135] v v
DidFail [36] v v v Woodpecker [137 v v
Total 42 40 48 27 6

Others (Publications Without v')

A3 [55], A5 [59], ACTEve [63], Adagio [65], AdRisk [67], AnDarwin [49], AndRadar [72], Androguard2 [74], Androguard [76], android-app-analysis-tool [78], Androlizer [81],
ApkCombiner [141], ApplIntent [90], AsyncDroid [143], AutoPPG [145], BlueSeal [101], Brahmastra [146], Chen et al. [108], ClickRelease [113], CMA [116], Cortesi et al. [122],
DEVA [130], DNADroid [48], DroidAlarm [[138], DroidChecker [140], DroidSim [62], EcoDroid [64], eLens [66], EvoDroid [148], Gallingani et al. [71], Gible et al. [73], Graa et al. [75],
I-ARM-Droid [152], Jensen et al. [84], Lin et al. [§7], Lu et al. [89], MalloDroid [91], MIGDroid [33], MobSafe [96], Nyx [43], ORBIT [154], PaddyFrog [98], Pathak et al. [100],
PerfChecker [155], Poeplau et al. [106], Redexer [107], Relda [109], SAAF [111], SADroid [112], SIF [157], SIG-Droid [52], SmartDroid [118], SMV-Hunter [120], StaDynA [158],

Uranine [127], vLens [44], Wang et al. [133], Zuo et al. [139]

If the XML implementation is not retained, function myFan-
cyMethod would be considered as dead code for any analyzer
not taking into account XML information.

Overall, Table [9] summarizes the support for addressing the
enumerated challenges by approaches from the literature. We
list in this table only those publications from our collected set
that are explicitly addressing at least one of the challenges.

RQ 2.4: Only few works in the literature has pro-
posed to tackle at once all challenges due to An-
droid specificities. Instead, most approaches select
to deal partially with those challenges, which are fur-
ther delivered directly within their implementation (as
a whole), leaving little opportunity for reuse by other
approaches.

5.3. Availability of Research Output

We now investigate whether the works behind our primary
publications have produced usable tools and whether their eval-
uations are extensive enough to make their conclusions reliable
or meaningful.

Among the 124 reviewed papers, 41 (i.e., only 33%) have
provided a publicly available tool. This finding suggests that,

18

D

(95}

[RN e WV, NN

11
12
13
14

Button btn (Button)
findViewById (R.id.mybutton) ;
btn.setOnClickListener (new
View.0OnClickListener () {
@0verride
public void onClick(View v) {
myFancyMethod (v) ;

}
»;
}

<Button android:id="@+id/mybutton"
android:text="Click Me!"
android:onClick="myFancyMethod" />

Listing 1: Registering a callback function for a button

Table 9: Classification of Approaches according to their support for Android specificities.

¥ ¥
%?0 o > Q‘?o . 5
~ g g > & S
& N & o o & & NS $ ¢ v ¥

Tool \;\\ e Q)Q \Q Ny ‘3§ Tool $ g ‘5 \Q N A§
A3E [57] v v v v DroidSafe [58] v v v v v v
A5 [59] v v DroidSIFT [60] v v
AAPL [61] v v v DroidSim [62] v
ACTEve [63] v v v EcoDroid [64] v
AdRisk [67] v Epicc [9] v v v
Amandroid [68] v v v v v EvoDroid [148] v v v v
Anadroid [69] v v v v FlowDroid [6] v v v v
AndroidLeaks [80] 4 v FUSE [70] v v v 4 v v
Apparecium [83] v v Gator? [[149] v v v v v
AppAudit [85] v v v v Gator3 [150] v v v v v
AppContext [88] v v v v Gator [151] v v v v
Applntent [90] v v v v HelDroid [77] v v v v
Apposcopy [92] v v v Hopper [79] v v v
AppSealer [94] v v 1C3 [39] v v v
AsDroid [95] v v v v v IccTA [7) v v v v v
Asynchronizer [144] v 4 v IFT [82] 4
AutoPPG [145] v v Julia [4] v v
Bartsch et al. [97] v v v v Lotrack [153] v v v v
Bastani et al. [99] v v v Mann et al. [93] v v v
BlueSeal [101] v v v v v ORBIT [154] v
Brahmastra [146] v v v v PaddyFrog [98] v v
Brox [103] v Pathak et al. [100] v v v
Capper [105] v v Pegasus [102] v v v 4
Cassandra [53] v PerfChecker [155] v v v v
CHEX [8] v v v PermissionFlow [104] v v v
Choi et al. [147] v v v Poeplau et al. [106] v v
ClickRelease [[113] v v v v Relda [109] v v v
CloneCloud [34] v Scandal [114] v v
CMA [116] v SEFA [115] v v v
ComDroid [117] v SIG-Droid [52] v v v v v
ContentScope [119] v v SmartDroid [118] v v
Covert [124] v 4 v v 4 SMV-Hunter [120] v v
CredMiner [126] v Sufatrio et al. [121] v v v v v
CryptoLint [54] v TASMAN [123] v v v v
DescribeMe [129] v v v v THRESHER [159] v
DEVA [130] v 4 v Uranine [127] v v v
Dflow+DroidInfer [132] v v v v Vekris et al. [128] v v v
DidFail [36] v v v v v v W2AIScanner [131] v v v v
DPartner [[136] v v WeChecker [134] v v v v v
DroidAlarm [138] v v Wognsen et al. [135] v v v
DroidChecker [140] v v v Woodpecker [137] v v v
DroidJust [56] v v v v Zuo et al. [139] v v v v

Total 57 64 74 30 6 30

Others (Publications Without v)

A3 [55], Adagio [65], AnDarwin [49], AndRadar [72], Androguard2 |74], Androguard [76], android-app-analysis-tool [78], Androlizer [81], ApkCombiner [141], AppCaulk [86],
AQUA [142], AsyncDroid [143], Bartel et al. [42], Chen et al. [108], Chen et al. [L10], COPES [41], Cortesi et al. [122], DNADroid [48], eLens [66], Gallingani et al. [71], Gible et
al. [73], Graa et al. [75], I-ARM-Droid [152], Jensen et al. [84], Lin et al. [87], Lu et al. [89], MalloDroid [91], MIGDroid [33], MobSafe [96], Nyx [43], Redexer [107], Rocha et al. [156],
SAAF [111], SADroid [112], SIF [157], StaDynA [158], TrustDroid [125], Violist [160], vLens [44], Wang et al. [133]

currently, despite the increasing size of the community work-
ing on static analysis of Android apps, sharing of research ef-
forts is still limited. Table[I0]summarizes the publicly available
approaches, among which 34 are open-sourced.

We now consider how researchers in the field of static anal-
ysis of Android apps evaluate their approaches. We differentiate
in-the-lab experiments, which are mainly performed with a few
hand-crafted test cases to highlight efficacy and/or correctness,
from in-the-wild experiments, which consider a large number of
real-world apps to demonstrate efficiency and/or scalability. In-
the-lab experiments help to quantify an approach through stan-
dard metrics (e.g., precision and recall), which is very difficult
to obtain through in-the-wild experiments, because of missing
of ground truth. In-the-wild experiments are however also es-
sential for static approaches. They are dedicated to finding real
and possibly solve problems of real-word apps, which may have
already been used by thousands of users. As shown in Table[T0]
only 7 approaches have taken into account in-the-lab and in-the-

19

#. of evaluated apps
T T

T T
0 2000

4000 6000 8000 10000 12000

Figure 10: The distribution of the number of evaluated apps (for all the
approaches reviewed in this work).

wild experiments at the same time.

Figure[I0|represents the distribution of the number of apps
evaluated through in-the-wild experiments by the approaches
reviewed in this work. The median number of apps that those
in-the-wild experiments consider are 374. The maximum num-
ber of evaluated apps is 318,515, which is considered by An-

Table 10: List of approaches with publicly available tool support, and
information on evaluation settings from the publications. With lab
= in-the-lab experiments; wild < in-the-wild experiments; and #
of apps < the number of apps that are evaluated in their in-the-wild
experiments. Note that in the last column, ”-” means that the number
of apps is not mentioned in the studied paper.

Approach Open-source Evaluation
pproac tool-support lab wild # of apps
A3E [57] v v 25
A5 [59] v v 1260
Adagio [63] v v 147950
Amandroid [68] v v v 853
Anadroid [69] v 0
Androguard?2 [74] v v 0
Androguard [76] v v 0
android-app-analysis-tool [78] v v 265
ApkCombiner [141]] v v 3000
Apparecium [83] v v 100
AsyncDroid [143] v 611
Asynchronizer [144] v 13
BlueSeal [101] v v 4039
Cassandra [53] v 0
Choi et al. [147] v v 0
ComDroid [117] v v 20
Covert [124] v 200
DEVA [130] v v 12
DidFail [36] v v 0
DroidSafe [58] v v 7/ 24
Epicc [9] v 1200
FlowDroid [6] v v v 1500
FUSE [70] v 7/ 2573
Gator2 [149] v v 20
Gator3 [150] v v 20
Gator [151]) v v 20
Hopper [79] v v 10
1C3 [39] v v 460
IccTA [7] v v / 15000
IFT [82] v 72
Lotrack [153] 4 v 100
MalloDroid [91] v v 13500
PerfChecker [155] v v 29
Poeplau et al. [106] v v 1632
Redexer [107] v v 14
SAAF [111] 4 v 142100
StaDynA [158] v v 10
THRESHER [159] v v 7
Violist [160] v v 0
WeChecker [134] v v v 1137
Wognsen et al. [135] v v 1700

dRadar [72].

RQ3: Only a small portion of state-of-the-art works
that perform static analysis on Android apps have
made their contributions available in public. Among
those approaches, only a few have evaluated their
approaches in both in-the-lab and in-the-wild exper-
iments.

5.4. Trends and Overlooked Challenges

Although Android has already been released in 2008, re-
search on analysing its programs has flourished in the last years.
We investigate the general trends in the research and make an
overview of the challenges that are (or are not) dealt with.

5.4.1. Trend Analysis

Fig. 11| shows the distribution of publications from our set
according to their year of publication. Research papers meeting
our criteria appear to have started in 2011, about two years and
a half after its commercial release in September 2008. Then, a

20

1| SmsManager sms =
2

SmsManager .getDefault () ;

3/ for (int i = 0; i < 123; i++)
4| sms.sendTextMessage ("+49 1234",
"count", null, null);

null,

Listing 2: Example of an implicit flow.

rush of papers ensued for both Security and Software engineer-
ing communities.

Fig.[12|shows that, as time goes by, research works are con-
sidering more sensitivities and addressing more challenges to
produce precise analyzers which are aware of more and more
analysis specificities, where the number of sensitivities (cf. Fig-
ure[I2a) and awareness (cf. Figure[I2b)) are calculated by adding
all the checks (v') appearing in Table |8 and Table [11] respec-
tively for a given year. We further look into the ICC challenge
for static analyzers to show the rapid increase of publications

which deal with it.
RQ 4.1: Research on static analysis for Android is ma-

turing, yielding more analysis approaches which con-
sider more analysis sensitivities and are aware of more
specificities of Android.

5.4.2. Dealing with Analysis Challenges

We now discuss our findings on the different challenges ad-
dressed in analyses to make them static-, implicit-flow, alias-
, dynamic-code-loading-, reflection-, native-code-, and multi-
threading-aware.

We consider an approach to be static-aware when it takes
into account static object values in Java program to improve
an analysis’ precision. 32 approaches explicitly take this into
account. 30 primary publications consider aliases. Both chal-
lenges are the most considered in approaches from the literature
as they are essential for performing precise static analysis.

We found 23 primary publications which take into account
multi-threading. We further investigate these supports since
multi-threading is well-known to be challenging even in the
Java ecosystem. We note that those approaches partially solve
multi-threading issues in a very simple manner, based on a pre-
defined whitelist of multi-threading mechanisms. For example,
when Thread.start() is launched, they simply bridge the gap be-
tween method start() and run() through an explicit call graph
edge. However, other complex multi-threading processes (e.g.,
those unknown in advance) or the synchronization among dif-
ferent threads are not yet addressed by the community of static
analysis researchers for Android apps.

Another challenge is on considering implicit flows, i.e., flow
information inferred from control-flow dependencies. Let us
take Listing 2] as an example, if an Android app does not send
out message 123 directly, but sends 123 times the word “count”,
the attacker can actually gain the same information as if the app
had directly sent the 123 value directly.

The remaining challenges include reflection, native code
and dynamic code loading (DCL) which are taken into account
by 15, 3 and 3 publications respectively.

40 36 20
35
35 17 16 15
14 14
30 15
2 25 13 12
25 10
8
20 10 s 7
15 6
10 5
4 2 4
5 2 0
0 0 0
2011 2012 2013 2014 2015 2011 2012 2013 2014 2015 2011 2012 2013 2014 2015

(a) Publications per year (total). (b) Publications per year (SEC). (c) Publications per year (SE/PL).

Figure 11: Distribution of examined publications through published year.

80 120 107 16
68 14
Zg 100 14
“ 48 80 79
40 2 60 0
30 33
2 18 40
1 , 20)
0 0
2011 2012 2013 2014 2015 2011 2012 2013 2014 2015 2011 2012 2013 2014 2015
(a) Trend of sensitivity. (b) Trend of awareness. (c) Trend of ICC.
Figure 12: Trend analysis.
Table 11: Summary through different aspects of static analysis.
£ £
5 g
g g
~ &y ~ &
PR § Y R - s
K 5 S S, § S B
Tool "ag £ < C? & ch = Tool 51(3 £ < 5 <& er ~
Amandroid v v FUSE [70] v v v v
Anadroid v Gible et al. [73] v
Apparecium [83] v Graa et al. v
i v v HelDroid [77] v v v
v v Hopper [79] v v
v v v 1C3 v v
v v IccTA [7] v v v
AppSealer v v IFT [82] v v
AsDroid v Lotrack [153] v v v
Asynchronizer [144] v Mann et al. v
Bastani et al. [99] v MobSafe v
BlueSeal [101] v v Pathak et al. v
Brox [103] v Pegasus [102] v v
Capper v v PerfChecker [155] v
Cassandra [53] v v PermissionFlow [104] v/ v
ClickRelease [113] v Poeplau et al. v
CloneCloud [34] v Relda v
ComDroid [117] v Rocha et al. v v
ContentScope [119] v SAAF [111] v
Covert v Scandal [114] v
CredMiner v SIF v v
CryptoLint v SMV-Hunter
DEVA v StaDynA v v
Dflow+DroidInfer [132] v Sufatrio et al. [121] v v v
DidFail v v v TASMAN [123] v v v
DPartner v THRESHER v v
DroidJust [56] v v v TrustDroid v v
DroidSafe v v v v v v Vekris et al. [128] v
DroidSIFT v v Violist v
DroidSim v v W2AIScanner [131] v v v v
eLens [66] v WeChecker [134] v v
Epicc [9] v v Wognsen et al. v v
FlowDroid v v v Woodpecker [137] v
Total 32 14 30 3 15 3 23
Others (Publications Without v)
, AAPL [61], ACTEve [63], Adagio [65], AdRisk [67], AnDarwin [49], AndRadar [72]
Bartel et al. [42], Bartsch et al. [07], Brahmastra

AndroidLeaks [80], Androlizer [81], ApkCombiner [T41], ApplIntent [90], AQUA [142], AsyncDroid [143], AutoPPG | 5
et al. [108], Chen et al. [T10], CHEX [8], Choi et al. [147], CMA [116], COPES [41], Cortesi et al. [122], DescribeMe [129], DNADroid [48], DroidAlarm [138], DroidChecker [140],

EcoDroid [64], EvoDroid [148], Gallingani et al. [71], Gator2 [149], Gator3 [150], Gator [151], I-ARM-Droid [152], Jensen et al. [84], Julia [4], Lin et al. [87], Lu et al. [89], Mallo-
Droid [91], MIGDroid [331, Nyx [43], ORBIT [154], PaddyFrog [98], Redexer [107], SADroid [112], SEFA [115], SIG-Droid [52], SmartDroid [T18], Uranine [127], vLens [44], Wang

et al. [133], Zuo et al. [139]

21

Table [[T] provides information on which challenges are ad-
dressed by the studied papers.

RQ 4.2: There are a number of analysis challenges
that remain to be addressed more largely by the com-
munity to build approaches that are aware of implicit-
Flows, dynamic code loading features, reflective calls,
native code and multi-threading, so as to implement
sound and highly precise static analyzers.

6. Discussions

The findings yielded by investigating the research questions
of this SLR constitute many discussion points around the re-
search and practice of Android.

6.1. Security will remain a strong focus of Android research

Static analysis of Android apps, as shown in the investi-
gation of RQI, is largely focused on uncovering security and
privacy issues. This suggests that security and privacy are a big
concern for both users and researchers nowadays. Several stud-
ies have already shown how the permission system can be mis-
used [42] and more recently how app uninstallation can leave
residual data which can be exploited in attacks [[176].

On the one hand, the open source nature of Android devel-
opment code base is central in the interest that it generates in
the research community. While it is easy for malware writers
to find exploitable security holes, it is also easy for researchers
to collect data, perform experiments and test solutions on this
platform.

On the other hand, time-to-market pressure is substantially
higher in the mobile ecosystem than in traditional desktop com-
puting, making testing a neglected concern by developers and
users.

Unfortunately, as revealed by Goseva-Popstojanova et al. [177]],

which has been also confirmed by this SLR, the state-of-the-art
static analysis tools are not very effective in detecting security
vulnerabilities, showing that further advanced improvements to
techniques and tools for static code analysis are still needed.

6.2. Considering external code is essential for a sound analysis

There are two types of external code available in Android
apps outside the main classes.dex: Dalvik bytecode (often hid-
den via the extension of another file format such as xml) and
binary code. Dalvik bytecode can be accessed through reflec-
tion and dynamic code loading (DCL) while binary code can
be leveraged via the Java native interface (JNI) APIs. Unfor-
tunately, as shown in Table both DCL and native code are
rarely considered by the state-of-the-art static analyzers. As a
result, current analyses, which do not consider DCL and native
code in their implementation, miss the opportunity to discover
problems hidden inside external code, leading to incomplete re-
sults.

22

6.3. Improving basic support tools such as Soot is a priority

The majority of research works reviewed in this SLR build
their analyses based on support tools such as Soot and WALA.
Unfortunately, these tools present various limitations. For ex-
ample, the transformation performed by Soot to translate Dalvik
bytecode into Jimple and back to bytecode is still without guar-
antees that the rebuilt application is runnable (i.e., will not crash
during execution). Several approaches and tools that instrument
apps, such as AppSealer, are impacted by this limitation. It is
thus essential that researchers focus on contributing in improv-
ing the static analysis and transformations supported by these
support tools. It is noteworthy that a small improvement in the
performance of these tools (e.g., providing more precise call
graph) will benefit many more research approaches (e.g., all
the approaches relying on call graph construction).

6.4. Sensitivities are key in the trade-off between precision and
performance

The more sensitivities a static analysis takes into account,
the more precise its results will be. However, as showcased
in FlowDroid [6], this precision will come at the cost of perfor-
mance: execution then becomes time consuming, and may even
fail on more corner case apps. Limiting the sensitivities may
yield some false positives and false negatives, but will produce
an approach that could be successfully applied at the scale of
markets. For instance, an imprecise but fast approach could be
used to quickly filter a huge set of applications. The remaining
application set, which should be much smaller than the initial
set, is then analyzed using a more precise, but much slower,
analysis.

6.5. Android specificities can help improve code coverage and
limit over-approximations

Android specificities such as lifecycle awareness are a must
to consider in order to not miss any code of the application
related to individual Android components. For an ICC-aware
static analysis, handling the inter-component communication
precisely would increase the connectivity of the call-graph and
would thus reduce the overall analysis time. Indeed, some con-
nection between components would now be recognized as over-
approximations and will no longer be taken into account by the
analysis.

The analysis for Android specificities are often intertwined
with the main static analysis itself. The precision of one analy-
sis has a direct impact on the other. For instance, the lifecycle
awareness requires to cover the whole call graph. Having a pre-
cise call graph, by handling many sensitivities, may increase
the precision in considering component’s lifecycle.

6.6. Researchers must strive to provide clean and reusable ar-
tifacts

Our SLR showed that most approaches select a subset of
challenges that they address directly within their implementa-
tion, while providing little opportunity for reuse in other ap-
proaches. Furthermore, only a few have made their tools pub-
licly available. This leads to a situation where redundant con-

tributions are made in the community without any compari-
son among state-of-the-art to further advance the research. Re-
searchers should thus be strongly encouraged to make available
at least the datasets used in their assessment experiments.

6.7. The booming Android ecosystem is appealing for holistic
analysis

As shown in Table the number of apps considered by
the state-of-the-art works is much less than the total number of
existing Android apps (e.g., over 2.4 million apps available on
Google Playfﬂ Thus, there is a need to develop static analyzers
that are capable of market-scale analysis. Furthermore, since
attackers can orchestrate several apps to perform advanced at-
tacks in order to bypass analyzers that only target single ap-
plications [178]], there is also a need to perform compositional
analysis among multiple Android apps. Unfortunately, inter-
app analysis is not yet well investigated by the community.
As shown in Table 9] less than 5% of examined approaches
have taken into account inter-app analysis. More urgently, re-
searchers should at least consider all the apps installed in a de-
vice as a whole to perform holistic analysis and contribute to
minimize end-user exposure to security threats.

6.8. Combining multiple approaches could be the key towards
highly precise analysis

Static analysis leads to over-approximations for multiple
reasons, one being that it analyzes all code, including dead
code. As a result, static analyses may generate false positives.
On the contrary, dynamic analyses under-approximates, as it is
challenging to cover all code, and thus tend to produce false
negatives. Both approaches are thus complementary and can
be combined to perform practical analyses. Typically, dynamic
analysis can focus on checking if the reported results of static
analysis are false positives, thus reducing the number of false
alarms.

Besides combining static and dynamic analysis approaches,
the community should consider also combining several static
approaches to conduct highly precise analysis. Recently, TAS-
MAN [123]] has proposed to perform targeted symbolic execu-
tion to remove false data leaks reported by FlowDroid, where
FlowDroid leverages static taint analysis to detect data leaks.
TASMAN’s promising results are encouraging for the research
direction on using multiple static approaches to ensure a mini-
mum false positives in analysis approaches.

7. Threats To Validity

Although we have attempted to collect relevant papers as
much as possible by combining both repository search and top-
venue search, our results may have still missed some relevant
publications. In particular, we have observed that currently the
state-of-the-art repository search engines (e.g., the one provided
by Springer) are not so accurate. Besides, we have only checked

15 https://www.statista.com/statistics/2662 10/number-of-available-
applications-in-the-google-play-store/

23

the 20 top venues for potential missed publications (i.e., the
top-venue search), which may not be enough. However, the
attempt of searching on top ranked venues has guaranteed that
the inﬂuentiaff] papers have been taken into account. To further
mitigate this, we have also performed a backward-snowballing
based on the current primary publications.

Given our interest in systematic literature reviews, we are
likely to have made some errors on the side of including or ex-
cluding primary publications, although each “borderline” pub-
lication has been cross-checked by the authors of this SLR.

In order to share the heavy workload of data extraction, we
have split the collected primary publications between different
authors to perform the detailed examination. As suggested by
Brereton et al. [[179]], we have applied a cross-checking mecha-
nism: for the data extracted by a researcher, we have assigned
it to another researcher to validate. However, some of the data
we extracted may be erroneous as well. As founded by Turner
et al. [180], the extractor/checker mode of working can lead
to data extraction and aggregation problems when there are a
large number of primary studies or the data is complex. To fur-
ther mitigate the inevitable erroneous, we validate our extracted
data through their original authors.

The rank of the top 20 venues we select are based on their
h5-index, which may change from time to time. Besides, we
have heuristically removed some potentially irrelevant venues
(e.g., cryptography-related venues), even if it is rare, it is still
possible that we may miss publications from those venues.

8. Related Work

To the best of our knowledge, there is no systematic liter-
ature review in the research area of static analysis of Android
apps. There is also no survey that specifically focuses on this re-
search area. However, several Android security related surveys
have been proposed in the literature. Unlike our approach, these
approaches are actually not done systematically (not SLRs). As
a result, there are always some well-known publications miss-
ing. Indeed, our review in this report has shown better coverage
than those surveys in terms of publications in the area of static
analysis of Android apps.

Sufatrio et al. [10] present a survey on general Android se-
curity, including both static and dynamic approaches. This sur-
vey first introduces a taxonomy with five main categories based
on the existing security solutions on Android. Then, it classifies
existing works into those five categories and thereby compara-
tively examines them. In the end, this survey has highlighted
the limitation of existing works and also discussed potential fu-
ture research directions. The survey shows in particular, that
most research solutions addressing security issues in Android
are leveraging static analysis. This relates to the finding in our
SLR that most static analysis works for Android target secu-
rity concerns. In their discussion of static analysis for Android,

16 Although it may not be always the case, we still believe that papers pub-
lished in better venues can consequently acquire more impact.

they also enumerate the different challenges of Android pro-
gramming (e.g., multiple entry points, GUI, call-backs in event-
based system, etc.) that analyzers must account for. In our SLR,
we detail those challenges and further clarify which works deal
with which challenge.

Faruki et al. [181] present another survey mainly focus-
ing on a set of known Android malware detection approach-
es/tools, e.g., the growth of malware, the existence of anti-
analysis techniques (i.e., being able to detect and thus evade
analyzing systems [182]) . This survey highlights the need to
take into account the existence of anti-analysis techniques (i.e.,
techniques that allow a malicious sample to detect and evade
analysing systems [[182]). For example, they discuss how tradi-
tional signature-based and static analysis-based approaches can
be vulnerable to stealthy techniques such as encryption. Even-
tually, it offers an overall overview for the directions that must
be taken to tackle the remaining issues in statically analyzing
Android apps.

Rashidi et al. [183] present another survey on existing An-
droid security threats and security enforcement solutions. This
survey classifies Android security mechanisms into four dimen-
sions: Information Leaks, Vulnerabilities (Privilege Escalation
and Colluding), Denial of Service (DoS) attacks, and App Clones.
Our SLR finds that security papers using static analysis indeed
target issues mainly in three of the dimensions they consider.
We did not find any work that statically detects or hints on DoS
attacks, which is reasonable. In contrast with their approach,
the systematic nature of the SLR, allowed us to find papers in
another security-related dimension, namely Cryptography mis-
uses.

Haris et al. [[184] present a survey focusing on privacy leaks
and their associated risks in mobile computing. This survey has
studied privacy in the area of mobile connectivity (e.g., cellular
and surveillance technology) and in the area of mobile sens-
ing (e.g., users prospects on sensor data). Besides, the authors
have studied not only Android-specific leakages but also other
mobile platforms including i0S and Windows. Similarly, [185]]
and [[186] present state-of-the-art reviews with considering mul-
tiple mobile platforms.

More recently, Martin et al. [187] produced a technical re-
port that reviews the state-of-the-art works on app store analysis
in the software engineering field. In their survey, they have re-
ported both non-technical and technical information to learn be-
haviors and trends of software repositories. More specifically,
they have reviewed the literature works in 7 dimensions: API
Analysis, Feature Analysis, Review Analysis, Security, Store
Ecosystem, Size and Effort Prediction, and Others, including
127 non-technical and 60 technical papers. In their findings,
they report that security is a pervasive concern in reviewed pa-
pers. This finding is inline with one of our SLR finding stating
that static analysis is mainly used for the purpose of assessing
app security. The whole focus of their work is however different
from ours.

Sadeghi et al. [[188] also present a technical report that stud-
ies the taxonomy and qualitative comparison of program anal-
ysis techniques, with a special focus on Android security. They
have examined 100 research papers, including both static anal-

24

ysis and dynamic analysis approaches. Comparing to this SLR,
we focus on static analysis of Android apps only. Among the
findings, Sadeghi et al. show that the most used intermediate
representation (IR) for their examined approaches are Jimple,
accounting for 29%, which is in line with our findings. Besides,
they also show that it is difficult to perform replication study on
security-based researches. Indeed, as what we have shown in
this SLR, most research tools and their evaluated artifacts are
not publicly available.

All in all, our SLR differs from all the aforementioned sur-
veys in a way that we exclusively focus on static analysis of
Android apps. We believe those surveys can compliment ours
and thus to provide a better view on the landscape of Android-
based research.

9. Conclusions

Research on static analysis of Android apps is quickly ma-
turing, producing more and more advanced approaches for stat-
ically uncovering security issues in app code. To summarize the
state-of-the-art and enumerate the challenges to be addressed by
the research community we have conducted a systematic litera-
ture review of publications on approaches involving the use of
static analysis on Android apps. In the process of this review,
we have collected 124 research papers published in Software
engineering, programming languages and security conference
and journal venues.

Our review has consisted in investigating the categories of
issues targeted by static analysis, the fundamental techniques
leveraged in the approaches, the implementation of the analy-
sis itself (i.e., which analysis sensitivities are considered, and
what Android characteristics are taken into account?), how the
evaluation was performed, and whether the research output is
available for use by the community.

We have found that, (1) most analyses are performed to un-
cover security flaws in Android apps; (2) many approaches are
built on top of a single analysis framework, namely Soot; (3)
taint analysis is the most applied fundamental analysis tech-
nique in the publications; (4) although most approaches support
multiple sensitivities, path sensitivity appears overlooked; (5)
all approaches are missing to consider at least 1 characteristic
of Android programming in their analysis; (6) finally, research
contributions artifacts, such as tools and datasets, are often un-
published.

10. Acknowledgment

The authors would like to thank the anonymous review-
ers for their helpful comments and suggestions, as well as all
the authors of static Android analysis who have provided use-
ful feedback to the initial draft of this SLR, during the self-
checking process. This work was supported by the Fonds Na-
tional de la Recherche (FNR), Luxembourg, under projects An-
droMap C13/15/5921289 and Recommend C15/IS/10449467.

Appendix A. The Full List of Examined Publications

References

[1

—

[2

—

3

—_

[4

=

[5

—

[6

—_

[7

—

[8

—

[9

—

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

Gartner, gartner says sales of smartphones grew 20 percent in third quar-
ter of 2014. https://wuw.gartner.com/newsroom/id/2944819/.
Accessed: 2015-08-22.

Developer economics ql 2015: State of the developer na-
tion. https://www.developereconomics.com/reports/
developer-economics-q1-2015/, Accessed: 2015-08-22.

G data: Mobile malware report. https://public.gdatasoftware.
com/Presse/Publikationen/Malware_Reports/G_DATA_
MobileMWR_Q2_2015_EN.pdf. Accessed: 2015-08-22.

Etienne Payet and Fausto Spoto. Static analysis of android programs.
Information and Software Technology, 54(11):1192-1201, 2012.

Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas, and
Denys Poshyvanyk. Auto-completing bug reports for android applica-
tions. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pages 673—-686. ACM, 2015.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In Proceedings of the
35th annual ACM SIGPLAN conference on Programming Language De-
sign and Implementation (PLDI 2014), 2014.

Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick Mcdaniel. IccTA: Detecting Inter-Component Pri-
vacy Leaks in Android Apps. In Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015), 2015.

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex:
statically vetting android apps for component hijacking vulnerabilities.
In Proceedings of the 2012 ACM conference on Computer and commu-
nications security, pages 229-240. ACM, 2012.

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric
Bodden, Jacques Klein, and Yves Le Traon. Effective inter-component
communication mapping in android with epicc: An essential step to-
wards holistic security analysis. In Proceedings of the 22nd USENIX
Security Symposium, 2013.

Darell JJ Tan, Tong-Wei Chua, Vrizlynn LL Thing, et al. Securing an-
droid: A survey, taxonomy, and challenges. ACM Computing Surveys
(CSUR), 47(4):58, 2015.

Alexandre Bartel. Security Analysis of Permission-Based Systems us-
ing Static Analysis: An Application to the Android Stack. PhD thesis,
University of Luxembourg, 2014.

Patrick Lam, Eric Bodden, Ondrej Lhotdk, and Laurie Hendren. The
soot framework for java program analysis: a retrospective. In Cetus
Users and Compiler Infastructure Workshop (CETUS 2011),2011.
Stephen Fink and Julian Dolby. Wala—the tj watson libraries for analysis,
2012.

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, Principles,
Techniques. Addison wesley, 1986.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of
object-oriented programs using static class hierarchy analysis. In
ECOOP950bject-Oriented Programming, 9th European Conference,
Aarhus, Denmark, August 7-11, 1995, pages 77-101. Springer, 1995.
David F Bacon and Peter F Sweeney. Fast static analysis of c++ virtual
function calls. ACM Sigplan Notices, 31(10):324-341, 1996.

Vijay Sundaresan, Laurie J. Hendren, Chrislain Razafimahefa, Raja
Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practi-
cal virtual method call resolution for java. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA ’00), pages 264-280, 2000.

Lars Ole Andersen. Program analysis and specialization for the C pro-
gramming language. PhD thesis, University of Cophenhagen, 1994.
Bjarne Steensgaard. Points-to analysis in almost linear time. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 32—41. ACM, 1996.

Chieh-Jan Mike Liang, Nicholas D Lane, Niels Brouwers, Li Zhang,
Borje F Karlsson, Hao Liu, Yan Liu, Jun Tang, Xiang Shan, Ranveer
Chandra, et al. Caiipa: automated large-scale mobile app testing through
contextual fuzzing. In Proceedings of the 20th annual international con-
ference on Mobile computing and networking, pages 519-530. ACM,
2014.

25

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Mgller. Sys-
tematic execution of android test suites in adverse conditions. In Pro-
ceedings of the 2015 International Symposium on Software Testing and
Analysis, pages 83-93. ACM, 2015.

Razieh Nokhbeh Zaeem, Mukul R Prasad, and Sarfraz Khurshid. Auto-
mated generation of oracles for testing user-interaction features of mo-
bile apps. In 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation, pages 183-192. IEEE, 2014.

Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cdrdenas,
Christopher Vendome, and Denys Poshyvanyk. Automatically discov-
ering, reporting and reproducing android application crashes. ICST’16,
2016.

Barbara Kitchenham. Procedures for performing systematic reviews.
2004.

Phu H Nguyen, Max Kramer, Jacques Klein, and Yves Le Traon. An
extensive systematic review on the model-driven development of secure
systems. Information and Software Technology, 68:62-81, 2015.
Google scholar metrics: Available metrics. https://scholar.
google.com.sg/intl/en/scholar/metrics.html#metrics. Ac-
cessed: 2015-08-22.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout:
analyzing the android permission specification. In Proceedings of
the 2012 ACM conference on Computer and communications security,
pages 217-228. ACM, 2012.

Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele,
Christopher Kruegel, Giovanni Vigna, and Yan Chen. Edgeminer: Auto-
matically detecting implicit control flow transitions through the android
framework. In Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS), 2015.

Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. Scandroid: Auto-
mated security certification of android. 2009.

Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt,
Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
daniel. I know what leaked in your pocket: uncovering privacy leaks on
android apps with static taint analysis. arXiv preprint arXiv:1404.7431,
2014.

Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and
Dawn Song. Juxtapp: A scalable system for detecting code reuse
among android applications. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 62-81.
Springer, 2012.

B. Kitchenham and S Charters. Guidelines for performing systematic
literature reviews in software engineering, 2007.

Wenjun Hu, Jing Tao, Xiaobo Ma, Wenyu Zhou, Shuang Zhao, and Ting
Han. Migdroid: Detecting app-repackaging android malware via method
invocation graph. In Computer Communication and Networks (ICCCN),
2014 23rd International Conference on, pages 1-7. IEEE, 2014.
Byung-Gon Chun, Sunghwan Thm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. Clonecloud: elastic execution between mobile device and
cloud. In Proceedings of the sixth conference on Computer systems,
pages 301-314. ACM, 2011.

Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. Droid-
force: enforcing complex, data-centric, system-wide policies in android.
In Availability, Reliability and Security (ARES), 2014 Ninth Interna-
tional Conference on, pages 40—49. IEEE, 2014.

William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer.
Android taint flow analysis for app sets. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on the State of the Art in Java Pro-
gram Analysis, pages 1-6. ACM, 2014.

Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas
Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Mining apps
for abnormal usage of sensitive data.

Li Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon. Automat-
ically exploiting potential component leaks in android applications. In
Proceedings of the 13th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom 2014), 2014.
Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and
Patrick McDaniel. Composite constant propagation: Application to an-
droid inter-component communication analysis. In Proceedings of the
37th International Conference on Software Engineering (ICSE), 2015.

https://www.gartner.com/newsroom/id/2944819/
https://www.developereconomics.com/reports/developer-economics-q1-2015/
https://www.developereconomics.com/reports/developer-economics-q1-2015/
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileMWR_Q2_2015_EN.pdf
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileMWR_Q2_2015_EN.pdf
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileMWR_Q2_2015_EN.pdf
https://scholar.google.com.sg/intl/en/scholar/metrics.html#metrics
https://scholar.google.com.sg/intl/en/scholar/metrics.html#metrics

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Yajin Zhou and Xuxian Jiang. Detecting passive content leaks and pol-
lution in android applications. In Proceedings of the 20th Network and
Distributed System Security Symposium (NDSS), 2013.

Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monper-
rus. Automatically securing permission-based software by reducing the
attack surface: An application to android. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 274-277. ACM, 2012.

Alexandre Bartel, John Klein, Martin Monperrus, and Yves Le Traon.
Static analysis for extracting permission checks of a large scale frame-
work: The challenges and solutions for analyzing android. Software
Engineering, IEEE Transactions on, 40(6):617-632, 2014.

Ding Li, Angelica Huyen Tran, and William GJ Halfond. Making web
applications more energy efficient for oled smartphones. In Proceedings
of the 36th International Conference on Software Engineering, pages
527-538. ACM, 2014.

Ding Li, Shuai Hao, William GJ Halfond, and Ramesh Govindan. Cal-
culating source line level energy information for android applications. In
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, pages 78-89. ACM, 2013.

Mario Linares-Vasquez, Gabriele Bavota, Carlos Bernal-Cardenas,
Rocco Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. Mining
energy-greedy api usage patterns in android apps: an empirical study. In
Proceedings of the 11th Working Conference on Mining Software Repos-
itories, pages 2—11. ACM, 2014.

Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E
Hassan. Understanding reuse in the android market. In Program Com-
prehension (ICPC), 2012 IEEE 20th International Conference on, pages
113-122. IEEE, 2012.

Israel J Mojica, Bram Adams, Meiyappan Nagappan, Steffen Dienst,
Thorsten Berger, and Ahmed E Hassan. A large-scale empirical study
on software reuse in mobile apps. IEEE software, 31(2):78-86, 2014.
Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones: De-
tecting cloned applications on android markets. In Computer Security—
ESORICS 2012, pages 37-54. Springer, 2012.

Jonathan Crussell, Clint Gibler, and Hao Chen. Andarwin: Scalable
detection of semantically similar android applications. In Computer
Security-ESORICS 2013, pages 182-199. Springer, 2013.

Mario Linares-Vdsquez, Andrew Holtzhauer, Carlos Bernal-Cardenas,
and Denys Poshyvanyk. Revisiting android reuse studies in the context
of code obfuscation and library usages. In Proceedings of the 11th Work-
ing Conference on Mining Software Repositories, pages 242-251. ACM,
2014.

Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An
investigation into the use of common libraries in android apps. In The
23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering (SANER 2016), 2016.

Nariman Mirzaei, Hamid Bagheri, Riyadh Mahmood, and Sam Malek.
Sig-droid: Automated system input generation for android applications.
In Software Reliability Engineering (ISSRE), 2015 IEEE 26th Interna-
tional Symposium on, pages 461-471. IEEE, 2015.

Steffen Lortz, Heiko Mantel, Artem Starostin, Timo Bihr, David Schnei-
der, and Alexandra Weber. Cassandra: Towards a certifying app store
for android. In Proceedings of the 4th ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices, pages 93—-104. ACM, 2014.
Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in android applica-
tions. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 73-84. ACM, 2013.

Zhang Luoshi, Niu Yan, Wu Xiao, Wang Zhaoguo, and Xue Yibo. A3:
Automatic analysis of android malware. In Ist International Workshop
on Cloud Computing and Information Security. Atlantis Press, 2013.
Xin Chen and Sencun Zhu. Droidjust: automated functionality-aware
privacy leakage analysis for android applications. In Proceedings of
the 8th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, page 5. ACM, 2015.

Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first explo-
ration for systematic testing of android apps. ACM SIGPLAN Notices,
48(10):641-660, 2013.

Michael I Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen
Nguyen, and Martin Rinard. Information-flow analysis of android appli-

26

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

[74]1

(751

cations in droidsafe. In Proc. of the Network and Distributed System
Security Symposium (NDSS). The Internet Society, 2015.

Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin,
and Patrick Tague. AS5: Automated analysis of adversarial android ap-
plications. In Proceedings of the 4th ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices, pages 39-50. ACM, 2014.
Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-aware an-
droid malware classification using weighted contextual api dependency
graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1105-1116. ACM, 2014.
Kangjie Lu, Zhichun Li, Vasileios P Kemerlis, Zhenyu Wu, Long Lu,
Cong Zheng, Zhiyun Qian, Wenke Lee, and Guofei Jiang. Checking
more and alerting less: Detecting privacy leakages via enhanced data-
flow analysis and peer voting. In NDSS, 2015.

Xin Sun, Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. Detecting
code reuse in android applications using component-based control flow
graph. In ICT Systems Security and Privacy Protection, pages 142-155.
Springer, 2014.

Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang.
Automated concolic testing of smartphone apps. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering (FSE), page 59. ACM, 2012.

Reyhaneh Jabbarvand, Alireza Sadeghi, Joshua Garcia, Sam Malek, and
Paul Ammann. Ecodroid: an approach for energy-based ranking of an-
droid apps. In Proceedings of the Fourth International Workshop on
Green and Sustainable Software, pages 8—14. IEEE Press, 2015.

Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Struc-
tural detection of android malware using embedded call graphs. In Pro-
ceedings of the 2013 ACM workshop on Artificial intelligence and secu-
rity, pages 45-54. ACM, 2013.

Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. Esti-
mating mobile application energy consumption using program analysis.
In Software Engineering (ICSE), 2013 35th International Conference
on, pages 92-101. IEEE, 2013.

Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi.
Unsafe exposure analysis of mobile in-app advertisements. In Proceed-
ings of the fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks, pages 101-112. ACM, 2012.

Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid:
A precise and general inter-component data flow analysis framework
for security vetting of android apps. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages
1329-1341. ACM, 2014.

Shuying Liang, Andrew W Keep, Matthew Might, Steven Lyde, Thomas
Gilray, Petey Aldous, and David Van Horn. Sound and precise malware
analysis for android via pushdown reachability and entry-point satura-
tion. In Proceedings of the Third ACM workshop on Security and pri-
vacy in smartphones & mobile devices, pages 21-32. ACM, 2013.
Tristan Ravitch, E Rogan Creswick, Aaron Tomb, Adam Foltzer, Trevor
Elliott, and Ledah Casburn. Multi-app security analysis with fuse: Stati-
cally detecting android app collusion. In Proceedings of the 4th Program
Protection and Reverse Engineering Workshop, page 4. ACM, 2014.
Daniele Gallingani, Rigel Gjomemo, VN Venkatakrishnan, and Stefano
Zanero. Static detection and automatic exploitation of intent message
vulnerabilities in android applications. 2015.

Martina Lindorfer, Stamatis Volanis, Alessandro Sisto, Matthias
Neugschwandtner, Elias Athanasopoulos, Federico Maggi, Christian
Platzer, Stefano Zanero, and Sotiris Ioannidis. Andradar: fast dis-
covery of android applications in alternative markets. In Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 51-71.
Springer, 2014.

Mariem Graa, Nora Cuppens Boulahia, Frédéric Cuppens, and Ana Cav-
alliy. Protection against code obfuscation attacks based on control de-
pendencies in android systems. In Software Security and Reliability-
Companion (SERE-C), 2014 IEEE Eighth International Conference on,
pages 149-157. IEEE, 2014.

Anthony Desnos and Geoffroy Gueguen. Android: From reversing to
decompilation. Proc. of Black Hat Abu Dhabi, pages 77-101, 2011.
Mariem Graa, Nora Cuppens-Boulahia, Frédéric Cuppens, and Ana
Cavalli. Detecting control flow in smarphones: Combining static and
dynamic analyses. In Cyberspace Safety and Security, pages 33—-47.
Springer, 2012.

[76]

[77]

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Anthony Desnos. Android: Static analysis using similarity distance. In
System Science (HICSS), 2012 45th Hawaii International Conference
on, pages 5394-5403. IEEE, 2012.

Nicolé Andronio, Stefano Zanero, and Federico Maggi. Heldroid: Dis-
secting and detecting mobile ransomware. In Research in Attacks, Intru-
sions, and Defenses, pages 382—404. Springer, 2015.

Dimitris Geneiatakis, Igor Nai Fovino, Ioannis Kounelis, and Paquale
Stirparo. A permission verification approach for android mobile appli-
cations. Computers & Security, 49:192-205, 2015.

Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Selective
control-flow abstraction via jumping. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 163—-182. ACM, 2015.
Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. An-
droidLeaks: automatically detecting potential privacy leaks in android
applications on a large scale. Springer, 2012.

Leonid Batyuk, Markus Herpich, Seyit Ahmet Camtepe, Karsten Rad-
datz, Aubrey-Derrick Schmidt, and Sahin Albayrak. Using static analy-
sis for automatic assessment and mitigation of unwanted and malicious
activities within android applications. In Malicious and Unwanted Soft-
ware (MALWARE), 2011 6th International Conference on, pages 66—72.
IEEE, 2011.

Michael D Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart
Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros Barros, Ravi
Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Xu. Collabora-
tive verification of information flow for a high-assurance app store. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1092—-1104. ACM, 2014.

Dennis Titze and Julian Schiitte. Apparecium: Revealing data flows
in android applications. In Proceedings of the 29th International Con-
ference on Advanced Information Networking and Applications (AINA),
2015.

Casper S Jensen, Mukul R Prasad, and Anders Mgller. Automated test-
ing with targeted event sequence generation. In Proceedings of the 2013
International Symposium on Software Testing and Analysis, pages 67—
77. ACM, 2013.

Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu.
Effective real-time android application auditing. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 899-914. IEEE, 2015.

Julian Schutte, Dennis Titze, and JM De Fuentes. Appcaulk: Data leak
prevention by injecting targeted taint tracking into android apps. In
Trust, Security and Privacy in Computing and Communications (Trust-
Com), 2014 IEEE 13th International Conference on, pages 370-379.
IEEE, 2014.

Jialiu Lin, Bin Lin, Norman Sadeh, and Jason Hong. Modeling users
mobile app privacy preferences: Restoring usability in a sea of permis-
sion settings. In Symposium on Usable Privacy and Security (SOUPS),
2014.

Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and
William Enck. Appcontext: Differentiating malicious and benign mobile
app behaviors using context. In Proc. of the International Conference on
Software Engineering (ICSE), 2015.

Zheng Lu and Supratik Mukhopadhyay. Model-based static source code
analysis of java programs with applications to android security. In Com-
puter Software and Applications Conference (COMPSAC), 2012 IEEE
36th Annual, pages 322-327. IEEE, 2012.

Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and
X Sean Wang. Appintent: Analyzing sensitive data transmission in an-
droid for privacy leakage detection. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages
1043-1054. ACM, 2013.

Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgirtner,
Bernd Freisleben, and Matthew Smith. Why eve and mallory love
android: An analysis of android ssl (in) security. In Proceedings of
the 2012 ACM conference on Computer and communications security,
pages 50-61. ACM, 2012.

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy:
Semantics-based detection of android malware through static analysis.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 576-587. ACM, 2014.

Christopher Mann and Artem Starostin. A framework for static detection
of privacy leaks in android applications. In Proceedings of the 27th An-

27

[94]

[95]

[96]

[971

(98]

[991

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

nual ACM Symposium on Applied Computing, pages 1457-1462. ACM,
2012.

Mu Zhang and Heng Yin. Appsealer: Automatic generation of
vulnerability-specific patches for preventing component hijacking at-
tacks in android applications. In Proceedings of the 21th Annual Net-
work and Distributed System Security Symposium (NDSS 2014), 2014.
Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang.
Asdroid: Detecting stealthy behaviors in android applications by user
interface and program behavior contradiction. In Proceedings of the
36th International Conference on Software Engineering, pages 1036—
1046. ACM, 2014.

Jianlin Xu, Yifan Yu, Zhen Chen, Bin Cao, Wenyu Dong, Yu Guo, and
Junwei Cao. Mobsafe: cloud computing based forensic analysis for
massive mobile applications using data mining. Tsinghua Science and
Technology, 18(4), 2013.

Steffen Bartsch, Bernhard Berger, Michaela Bunke, and Karsten Sohr.
The transitivity-of-trust problem in android application interaction. In
Availability, Reliability and Security (ARES), 2013 Eighth International
Conference on, pages 291-296. IEEE, 2013.

Jianliang Wu, Tingting Cui, Tao Ban, Shanqing Guo, and Lizhen Cui.
Paddyfrog: systematically detecting confused deputy vulnerability in
android applications. Security and Communication Networks, 2015.
Osbert Bastani, Saswat Anand, and Alex Aiken. Interactively verifying
absence of explicit information flows in android apps. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 299-315.
ACM, 2015.

Abhinav Pathak, Abhilash Jindal, Y Charlie Hu, and Samuel P Mid-
kiff. What is keeping my phone awake?: characterizing and detecting
no-sleep energy bugs in smartphone apps. In Proceedings of the 10th
international conference on Mobile systems, applications, and services,
pages 267-280. ACM, 2012.

Feng Shen, Namita Vishnubhotla, Chirag Todarka, Mohit Arora, Babu
Dhandapani, Eric John Lehner, Steven Y Ko, and Lukasz Ziarek. Infor-
mation flows as a permission mechanism. In Proceedings of the 29th
ACMY/IEEE international conference on Automated software engineer-
ing, pages 515-526. ACM, 2014.

Kevin Zhijie Chen, Noah M Johnson, Vijay D’Silva, Shuaifu Dai, Kyle
MacNamara, Thomas R Magrino, Edward XueJun Wu, Martin Rinard,
and Dawn Xiaodong Song. Contextual policy enforcement in android
applications with permission event graphs. In NDSS, 2013.

Siyuan Ma, Zhushou Tang, Qiuyu Xiao, Jiafa Liu, Tran Triet Duong,
Xiaodong Lin, and Haojin Zhu. Detecting gps information leakage in
android applications. In Global Communications Conference (GLOBE-
COM), 2013 IEEE, pages 826-831. IEEE, 2013.

Dragos Sbirlea, Michael G Burke, Salvatore Guarnieri, Marco Pistoia,
and Vivek Sarkar. Automatic detection of inter-application permission
leaks in android applications. IBM Journal of Research and Develop-
ment, 57(6):10-1, 2013.

Mu Zhang and Heng Yin. Efficient, context-aware privacy leakage con-
finement for android applications without firmware modding. In Pro-
ceedings of the 9th ACM symposium on Information, computer and com-
munications security, pages 259-270. ACM, 2014.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher
Kruegel, and Giovanni Vigna. Execute this! analyzing unsafe and ma-
licious dynamic code loading in android applications. In Proceedings
of the 20th Annual Network & Distributed System Security Symposium
(NDSS), 2014.

Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel,
Nikhilesh Reddy, Jeftrey S Foster, and Todd Millstein. Dr. android and
mr. hide: fine-grained permissions in android applications. In Proceed-
ings of the second ACM workshop on Security and privacy in smart-
phones and mobile devices, pages 3—14. ACM, 2012.

Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy and scala-
bility simultaneously in detecting application clones on android markets.
In Proceedings of the 36th International Conference on Software Engi-
neering, pages 175-186. ACM, 2014.

Chaorong Guo, Jian Zhang, Jun Yan, Zhiqiang Zhang, and Yanli Zhang.
Characterizing and detecting resource leaks in android applications. In
Automated Software Engineering (ASE), 2013 IEEE/ACM 28th Interna-
tional Conference on, pages 389-398. IEEE, 2013.

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Chia-Mei Chen, Je-Ming Lin, and Gu-Hsin Lai. Detecting mobile ap-
plication malicious behaviors based on data flow of source code. In
Trustworthy Systems and their Applications (TSA), 2014 International
Conference on, pages 1-6. IEEE, 2014.

Johannes Hoffmann, Martin Ussath, Thorsten Holz, and Michael Spre-
itzenbarth. Slicing droids: program slicing for smali code. In Proceed-
ings of the 28th Annual ACM Symposium on Applied Computing, pages
1844-1851. ACM, 2013.

Zhihui Han, Liang Cheng, Yang Zhang, Shuke Zeng, Yi Deng, and Xi-
aoshan Sun. Systematic analysis and detection of misconfiguration vul-
nerabilities in android smartphones. In Trust, Security and Privacy in
Computing and Communications (TrustCom), 2014 IEEE 13th Interna-
tional Conference on, pages 432-439. IEEE, 2014.

Kristopher Micinski, Jonathan Fetter-Degges, Jinseong Jeon, Jeffrey S
Foster, and Michael R Clarkson. Checking interaction-based declas-
sification policies for android using symbolic execution. In Computer
Security-ESORICS 2015, pages 520-538. Springer, 2015.

Jinyung Kim, Yongho Yoon, Kwangkeun Yi, Junbum Shin, and SWRD
Center. Scandal: Static analyzer for detecting privacy leaks in android
applications. MoST, 2012.

Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang.
The impact of vendor customizations on android security. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communica-
tions security, pages 623-634. ACM, 2013.

Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, and Shi Chen-
jie. Modelling analysis and auto-detection of cryptographic misuse in
android applications. In Dependable, Autonomic and Secure Comput-
ing (DASC), 2014 IEEE 12th International Conference on, pages 75-80.
IEEE, 2014.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner.
Analyzing inter-application communication in android. In Proceedings
of the 9th international conference on Mobile systems, applications, and
services, pages 239-252. ACM, 2011.

Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong,
Xinhui Han, and Wei Zou. Smartdroid: an automatic system for reveal-
ing ui-based trigger conditions in android applications. In Proceedings
of the second ACM workshop on Security and privacy in smartphones
and mobile devices, pages 93-104. ACM, 2012.

Zhou Yajin and Jiang Xuxian. Detecting passive content leaks and pol-
lution in android applications. In Proceedings of the 20th Network and
Distributed System Security Symposium (NDSS), 2013.

David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhigiang Lin, and
Latifur Khan. Smv-hunter: Large scale, automated detection of ssl/tls
man-in-the-middle vulnerabilities in android apps. In Proceedings of the
19th Network and Distributed System Security Symposium, 2014.
Sufatrio, Tong-Wei Chua, Darell JJ Tan, and Vrizlynn LL Thing. Ac-
curate specification for robust detection of malicious behavior in mobile
environments. In Computer Security—-ESORICS 2015, pages 355-375.
Springer, 2015.

Agostino Cortesi, Pietro Ferrara, Marco Pistoia, and Omer Tripp. Dat-
acentric semantics for verification of privacy policy compliance by mo-
bile applications. In Verification, Model Checking, and Abstract Inter-
pretation, pages 61-79. Springer, 2015.

Steven Arzt, Siegfried Rasthofer, Robert Hahn, and Eric Bodden. Us-
ing targeted symbolic execution for reducing false-positives in dataflow
analysis. In Proceedings of the 4th ACM SIGPLAN International Work-
shop on State Of the Art in Program Analysis, pages 1-6. ACM, 2015.
Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek.
Covert: Compositional analysis of android inter-app permission leak-
age. 2015.

Zhibo Zhao and Fernando C Colon Osono. trustdroid¢: Preventing
the use of smartphones for information leaking in corporate networks
through the used of static analysis taint tracking. In Malicious and Un-
wanted Software (MALWARE), 2012 7th International Conference on,
pages 135-143. IEEE, 2012.

Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. Harvesting developer
credentials in android apps. In Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, page 23. ACM,
2015.

Vaibhav Rastogi, Zhengyang Qu, Jedidiah McClurg, Yinzhi Cao, and

28

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

Yan Chen. Uranine: Real-time privacy leakage monitoring without sys-
tem modification for android. In Security and Privacy in Communication

Networks, pages 256-276. Springer, 2015.

Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal. To-
wards verifying android apps for the absence of no-sleep energy bugs.
In Proceedings of the 2012 USENIX conference on Power-Aware Com-
puting and Systems, pages 3-3. USENIX Association, 2012.

Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. Towards automatic
generation of security-centric descriptions for android apps. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 518-529. ACM, 2015.

Gholamreza Safi, Arman Shahbazian, WG Halfond, and Nenad Medvi-
dovic. Detecting event anomalies in event-based systems. In Proceed-
ings of the 10th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2015.

Behnaz Hassanshahi, Yaoqi Jia, Roland HC Yap, Prateek Saxena, and
Zhenkai Liang. Web-to-application injection attacks on android: Char-
acterization and detection. In Computer Security—ESORICS 2015, pages
577-598. Springer, 2015.

Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. Scalable and
precise taint analysis for android. In Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis, pages 106—117.
ACM, 2015.

Jingtian Wang, Guoquan Wu, Xiaoquan Wu, and Jun Wei. Detect and
optimize the energy consumption of mobile app through static analysis:
an initial research. In Proceedings of the Fourth Asia-Pacific Symposium
on Internetware, page 22. ACM, 2012.

Xingmin Cui, Jingxuan Wang, Lucas CK Hui, Zhongwei Xie, Tian
Zeng, and SM Yiu. Wechecker: efficient and precise detection of priv-
ilege escalation vulnerabilities in android apps. In Proceedings of the
8th ACM Conference on Security & Privacy in Wireless and Mobile Net-
works, page 25. ACM, 2015.

Erik Ramsgaard Wognsen, Henrik Sgndberg Karlsen, Mads Chr Olesen,
and René Rydhof Hansen. Formalisation and analysis of dalvik byte-
code. Science of Computer Programming, 92:25-55, 2014.

Ying Zhang, Gang Huang, Xuanzhe Liu, Wei Zhang, Hong Mei, and
Shunxiang Yang. Refactoring android java code for on-demand compu-
tation offloading. In ACM SIGPLAN Notices, volume 47, pages 233—
248. ACM, 2012.

Michael C Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic
detection of capability leaks in stock android smartphones. In NDSS,
2012.

Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. Droidalarm: an all-
sided static analysis tool for android privilege-escalation malware. In
Proceedings of the 8th ACM SIGSAC symposium on Information, com-
puter and communications security, pages 353-358. ACM, 2013.
Chaoshun Zuo, Jianliang Wu, and Shanging Guo. Automatically de-
tecting ssl error-handling vulnerabilities in hybrid mobile web apps. In
Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security, pages 591-596. ACM, 2015.

Patrick PF Chan, Lucas CK Hui, and Siu-Ming Yiu. Droidchecker: an-
alyzing android applications for capability leak. In Proceedings of the
fifth ACM conference on Security and Privacy in Wireless and Mobile
Networks, pages 125-136. ACM, 2012.

Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, and
Yves Le Traon. ApkCombiner: Combining Multiple Android Apps to
Support Inter-App Analysis. In Proceedings of the 30th IFIP Interna-
tional Conference on ICT Systems Security and Privacy Protection (SEC
2015), year=2015.

Chon Ju Kim and Phyllis Frankl. Aqua: Android query analyzer. In
Reverse Engineering (WCRE), 2012 19th Working Conference on, pages
395-404. IEEE, 2012.

Yu Lin, Semih Okur, and Danny Dig. Study and refactoring of an-
droid asynchronous programming. In Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on, pages 224—
235. IEEE, 2015.

Yu Lin, Cosmin Radoi, and Danny Dig. Retrofitting concurrency for
android applications through refactoring. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 341-352. ACM, 2014.

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Le Yu, Tao Zhang, Xiapu Luo, and Lei Xue. Autoppg: Towards auto-
matic generation of privacy policy for android applications. In Proceed-
ings of the 5th Annual ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices, pages 39-50. ACM, 2015.

Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo
Chen, Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall.
Brahmastra: Driving apps to test the security of third-party components.
In 23rd USENIX Security Symposium (USENIX Security 14),2014.
Kwanghoon Choi and Byeong-Mo Chang. A type and effect system
for activation flow of components in android programs. Information
Processing Letters, 114(11):620-627, 2014.

Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. Evodroid: seg-
mented evolutionary testing of android apps. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 599-609. ACM, 2014.

Shengqgian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas
Rountev. Static control-flow analysis of user-driven callbacks in an-
droid applications. In International Conference on Software Engineer-
ing (ICSE), 2015.

Shengqgian Yang, Hailong Zhang, Haowei Wu, Yan Wang, Dacong Yan,
and Atanas Rountev. Static window transition graphs for android. In
Automated Software Engineering (ASE), 2015 30th IEEE/ACM Interna-
tional Conference on, pages 658—668. IEEE, 2015.

Atanas Rountev and Dacong Yan. Static reference analysis for gui ob-
jects in android software. In Proceedings of Annual IEEE/JACM Inter-
national Symposium on Code Generation and Optimization, page 143.
ACM, 2014.

Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen.
I-arm-droid: A rewriting framework for in-app reference monitors for
android applications. Mobile Security Technologies, 2012, 2012.

Max Lillack, Christian Késtner, and Eric Bodden. Tracking load-time
configuration options. In Proceedings of the 29th ACM/IEEE interna-
tional conference on Automated software engineering, pages 445-456.
ACM, 2014.

Wei Yang, Mukul R Prasad, and Tao Xie. A grey-box approach for au-
tomated gui-model generation of mobile applications. In Fundamental
Approaches to Software Engineering, pages 250-265. Springer, 2013.
Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and de-
tecting performance bugs for smartphone applications. In Proceedings
of the 36th International Conference on Software Engineering, pages
1013-1024. ACM, 2014.

Bruno PS Rocha, Marco Conti, Sandro Etalle, and Bruno Crispo. Hybrid
static-runtime information flow and declassification enforcement. Infor-
mation Forensics and Security, IEEE Transactions on, 8(8):1294-1305,
2013.

Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. Sif:
a selective instrumentation framework for mobile applications. In Pro-
ceeding of the 11th annual international conference on Mobile systems,
applications, and services (MobiSys), pages 167-180. ACM, 2013.
Yury Zhauniarovich, Magsood Ahmad, Olga Gadyatskaya, Bruno
Crispo, and Fabio Massacci. Stadyna: Addressing the problem of dy-
namic code updates in the security analysis of android applications. In
Proceedings of the 5th ACM Conference on Data and Application Secu-
rity and Privacy, pages 37-48. ACM, 2015.

Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Thresher:
Precise refutations for heap reachability. In ACM SIGPLAN Notices,
volume 48, pages 275-286. ACM, 2013.

Ding Li, Yingjun Lyu, Mian Wan, and William GJ Halfond. String anal-
ysis for java and android applications. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pages 661-672.
ACM, 2015.

ITon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for Internet
applications.

Damien Octeau, William Enck, and Patrick McDaniel. The ded de-
compiler. Network and Security Research Center, Department of Com-
puter Science and Engineering, Pennsylvania State University, Univer-
sity Park, PA, USA, Tech. Rep. NAS-TR-0140-2010, 2010.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaud-
huri. A study of android application security. In USENIX security sym-
posium, volume 2, page 2, 2011.

29

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting an-
droid applications to java bytecode. In Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software
Engineering, page 6. ACM, 2012.

Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon.
Dexpler: Converting Android Dalvik Bytecode to Jimple for Static
Analysis with Soot. In ACM Sigplan International Workshop on the
State Of The Art in Java Program Analysis, 2012.

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: a code
manipulation tool to implement adaptable systems. Adaptable and ex-
tensible component systems, 30, 2002.

Eugene Kuleshov. Using the asm framework to implement common
java bytecode transformation patterns. Aspect-Oriented Software Devel-
opment, 2007.

Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning
approach for classifying and categorizing android sources and sinks. In
Proceedings of the ISOC Network and Distributed System Security Sym-
posium (NDSS), 2014.

Li Li, Tegawend F. Bissyand, Damien Octeau, and Jacques Klein.
Droidra: Taming reflection to support whole program analysis of an-
droid apps. In Proceedings of the 2016 International Symposium on
Software Testing and Analysis, ISSTA, 2016.

Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Instrumenting an-
droid and java applications as easy as abc. In Runtime Verification, pages
364-381. Springer, 2013.

Luca Cardelli and Peter Wegner. On understanding types, data abstrac-
tion, and polymorphism. ACM Computing Surveys (CSUR), 17(4):471—
523, 1985.

Béatrice Bérard, Michel Bidoit, Alain Finkel, Francois Laroussinie, An-
toine Petit, Laure Petrucci, and Philippe Schnoebelen. Systems and soft-
ware verification: model-checking techniques and tools. Springer Sci-
ence & Business Media, 2013.

Mayur Naik and Jens Palsberg. A type system equivalent to a model
checker. In Programming Languages and Systems, pages 374-388.
Springer, 2005.

V Benjamin Livshits and Monica S Lam. Tracking pointers with path
and context sensitivity for bug detection in ¢ programs. ACM SIGSOFT
Software Engineering Notes, 28(5):317-326, 2003.

V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities
in java applications with static analysis. In Usenix Security, 2005.

Xiao Zhang, Kailiang Ying, Yousra Aafer, Zhenshen Qiu, and Wenliang
Du. Life after app uninstallation: Are the data still alive? data residue
attacks on android. NDSS ’16.

Katerina Goseva-Popstojanova and Andrei Perhinschi. On the capability
of static code analysis to detect security vulnerabilities. Information and
Software Technology, 68:18-33, 2015.

Karim O Elish, Danfeng Yao, and Barbara G Ryder. On the need of
precise inter-app icc classification for detecting android malware collu-
sions. In Most@S&P, 2015.

Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner,
and Mohamed Khalil. Lessons from applying the systematic literature
review process within the software engineering domain. Journal of sys-
tems and software, 80(4):571-583, 2007.

Mark Turner, Barbara Kitchenham, David Budgen, and OP Brereton.
Lessons learnt undertaking a large-scale systematic literature review. In
Proceedings of the International Conference on Evaluation and Assess-
ment in Software Engineering (EASE), 2008.

Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj
Gaur, Marco Conti, and Raj Muttukrishnan. Android security: A survey
of issues, malware penetration and defenses. IEEE Communications
Surveys & Tutorials, 17:998-1022, 2015.

Timothy Vidas and Nicolas Christin. Evading android runtime analysis
via sandbox detection. In Proceedings of the 9th ACM symposium on
Information, computer and communications security, pages 447-458.
ACM, 2014.

Bahman Rashidi and Carol Fung. A survey of android security threats
and defenses. Journal of Wireless Mobile Networks, Ubiquitous Com-
puting, and Dependable Applications, 6, 2015.

Muhammad Haris, Hamed Haddadi, and Pan Hui. Privacy leakage in
mobile computing: Tools, methods, and characteristics. arXiv preprint
arXiv:1410.4978, 2014.

[185]

[186]

Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. A
survey on security for mobile devices. Communications Surveys & Tu-
torials, IEEE, 15(1):446-471, 2013.

Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Ar-
turo Ribagorda. Evolution, detection and analysis of malware for smart
devices. Communications Surveys & Tutorials, IEEE, 16(2):961-987,
2014.

30

[187] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark
Harman. A survey of app store analysis for software engineering. RN,
16:02, 2016.

[188] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek. A
taxonomy and qualitative comparison of program analysis techniques
for security assessment of android apps. 2016.

Table A.12: The Full List of Examined Publications (Part I).

Year VenueType VenueName Title

2015 ACM SPSM (W) AutoPPG: Towards Automatic Generation of Privacy Policy for Android Applications [[145]

2015 Other NDSS Slléeféclmg More and Alerting Less: Detecting Privacy Leakages via Enhanced Data-flow Analysis and Peer Vot-

2015 IEEE AINA Apparecium: Revealing Data Flows in Android Applications [83]

2015 IEEE/ACM ICSE IccTA : Detecting Inter-Component Privacy Leaks in Android Apps [7]

2015 Springer IFIP SEC ApkCombiner : Combining Multiple Android Apps to Support Inter-App Analysis [[141]

2015 ACM WiSec DroidJust: automated functionality-aware privacy leakage analysis for Android applications [56]

2015 WoK SCN (J) PaddyFrog: systematically detecting confused deputy vulnerability in Android applications [98]

2015 ACM CODASPY tslzillz}[rll?g Addressing the Problem of Dynamic Code Updates in the Security Analysis of Android Applica-

2015 Springer ESORICS Accurate Specification for Robust Detection of Malicious Behavior in Mobile Environments [121]

2015 ACM FSE String Analysis for Java and Android Applications [160]

2015 IEEE/ACM ICSE Static Control-Flow Analysis of User-Driven Callbacks in Android Applications [149]

2015 Springer RAID HelDroid: Dissecting and Detecting Mobile Ransomware [[77]

2015 IEEE/ACM ASE Study and Refactoring of Android Asynchronous Programming [143]

2015 ACM ISSTA Scalable and precise taint analysis for Android [132]

2015 IEEE S&P Effective Real-Time Android Application Auditing [85]

2015 Other NDSS Information-Flow Analysis of Android Applications in DroidSafe [58]

2015 ACM AsiaCCS Automatically Detecting SSL Error-Handling Vulnerabilities in Hybrid Mobile Web Apps [139]

2015 IEEE/ACM ICSE AppContext: Differentiating Malicious and Benign Mobile App Behaviors Using Context [88]

2015 Springer ESORICS ‘Web-to-Application Injection Attacks on Android: Characterization and Detection [131]

2015 ACM WiSec WeChecker: efficient and precise detection of privilege escalation vulnerabilities in Android apps [134]

2015 ACM WiSec Harvesting developer credentials in Android apps [[126]

2015 IEEE GREENS (W) EcoDroid: an approach for energy-based ranking of Android apps [64]

2015 Springer SecureComm Uranine: Real-time Privacy Leakage Monitoring without System Modification for Android [127]

2015 IEEE/ACM ICSE Composite Constant Propagation: Application to Android Inter-Component Communication Analysis [39]

2015 ACM CCS Towards Automatic Generation of Security-Centric Descriptions for Android Apps [129]

2015 Springer VMCAI Datacentric Semantics for Verification of Privacy Policy Compliance by Mobile Applications [[122]

2015 IEEE ISSRE SIG-Droid: Automated system input generation for Android applications [52]

2015 ACM OOPSLA Selective Control-Flow Abstraction via Jumping [79]

2015 Springer ESORICS Checking Interaction-Based Declassification Policies for Android Using Symbolic Execution [113]

2015 IEEE/ACM ASE Static Window Transition Graphs for Android [[150]

2015 ACM FSE Detecting Event Anomalies in Event-Based Systems [130]

2015 ACM SOAP (W) Using targeted symbolic execution for reducing false-positives in dataflow analysis [[123]

2015 ACM OOPSLA Interactively verifying absence of explicit information flows in Android apps [99]

2015 IEEE MoST (W) Static Detection and Automatic Exploitation of Intent Message Vulnerabilities in Android Applications [71]

2015 IEEE TSE COVERT: Compositional Analysis of Android Inter-App Permission Leakage [[124]

2015 Elsevier CompSec (J) A Permission verification approach for android mobile applications [78]

2014 Other NDSS AppSeale.r: Auto_ma?ic Generation of Vulnerability-Specific Patches for Preventing Component Hijacking Attacks
in Android Applications [94)]

2014 USENIX SOUPS Modeling Users’ Mobile App Privacy Preferences : Restoring Usability in a Sea of Permission Settings [87]

2014 IEEE TSA Detecting Mobile Application Malicious Behaviors Based on Data Flow of Source Code [[110]

2014 ACM FSE Apposcopy : Semantics-Based Detection of Android Malware Through Static Analysis [92]

2014 ACM SPSM (W) A5 : Automated Analysis of Adversarial Android Applications [S9]

2014 Elsevier IPL (J) A type and effect system for activation flow of components in Android programs [147]

2014 ACM FSE EvoDroid: segmented evolutionary testing of Android apps [[148]

2014 USENIX Security Brahmastra: Driving Apps to Test the Security of Third-Party Components [146]

2014 ACM AsiaCCS glljliglfln(;,s Context-Aware Privacy Leakage Confinement for Android Applications without Firmware Mod-

2014 ACM SOAP (W) Android taint flow analysis for app sets [36]

2014 Springer DIMVA AndRadar: Fast Discovery of Android Applications in Alternative Markets [72]

2014 ACM CCS Semantics-Aware Android Malware Classification Using Weighted Contextual API Dependency Graphs [60]

2014 IEEE TSE (J) Static Analysis fo_r Extr_acting Permission Checks of a Large Scale Framework: The Challenges And Solutions for
Analyzing Android [42]

2014 IEEE/ACM ASE Information flows as a permission mechanism [[101]

2014 Other NDSS Execute this! analyzing unsafe and malicious dynamic code loading in android applications [[106]

2014 IEEE/ACM ICSE Achieving accuracy and scalability simultaneously in detecting application clones on Android markets [108]

2014 IEEE DASC Modelling Analysis and Auto-detection of Cryptographic Misuse in Android Applications [116]

2014 Elsevier SCP (J) Formalisation and analysis of Dalvik bytecode [[135]

2014 ACM SPSM (W) Cassandra: Towards a Certifying App Store for Android [53]

2014 ACM ccs Aman@roid A P_recise and General Inter-component Data Flow Analysis Framework for Security Vetting of
Android Apps [68]

2014 IEEE/ACM ICSE Making web applications more energy efficient for OLED smartphones [43]

2014 IEEE/ACM ICSE Characterizing and detecting performance bugs for smartphone applications [[155]

2014 IEEE ICCCN MIGDroid: Detecting APP-Repackaging Android malware via method invocation graph [33]

2014 ACM CCS Collaborative Verification of Information Flow for a High-Assurance App Store [82]

2014 IEEE TrustCom Systematic Analysis and Detection of Misconfiguration Vulnerabilities in Android Smartphones [112]

2014 IEEE/ACM ICSE AsDroid : Detecting Stealthy Behaviors in Android Applications by User Interface and Program Behavior Contra-

diction [95]

(W) stands for workshp; (J) stands for journal; WoK stands for Web of Knowledge.

31

Table A.13: The Full List of Examined Publications (Part II).

Year VenueType VenueName Title

2014 Other NDSS il\;p\:ﬁg(l)\']TER: Large Scale, Automated Detection of SSL/TLS Man-in-the-Middle Vulnerabilities in Android

2014 ACM PPREW (W) Multi-App Security Analysis with FUSE : Statically Detecting Android App Collusion [70]

2014 IEEE SERE Protection against Code Obfuscation Attacks based on control dependencies in Android Systems [73]

2014 Springer IFIP SEC Detecting Code Reuse in Android Applications Using Component-Based Control Flow Graph [62]

2014 IEEE TrustCom AppCaulk: Data Leak Prevention by Injecting Targeted Taint Tracking Into Android Apps [86]

2014 ACM CGO Static Reference Analysis for GUI Objects in Android Software [151]

2014 ACM FSE Retrofitting concurrency for Android applications through refactoring [[144]

2014 ACM PLDI I;l;;:])[goid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android

2014 IEEE/ACM ASE Tracking Load-time Configuration Options [153]

2013 IEEE GLOBECOM Detecting GPS information leakage in Android applications [[103]

2013 ACM SPSM (W) Sound and precise malware analysis for android via pushdown reachability and entry-point saturation [69]

2013 Other NDSS Contextual Policy Enforcement in Android Applications with Permission Event Graphs [[102]

2013 ACM AlSec (W) Structural Detection of Android Malware using Embedded Call Graphs [65]

2013 ACM ISSTA Calculating source line level energy information for Android applications [44]

2013 IEEE TIFS (J) Hybrid static-runtime information flow and declassification enforcement [156]

2013 ACM AsiaCCS DroidAlarm: an all-sided static analysis tool for android privilege-escalation malware [138]

2013 ACM SAC Slicing droids: program slicing for smali code [111]

2013 IEEE ARES The Transitivity-of-Trust Problem in Android Application Interaction [97]

2013 WoK IBM R&D (J) Automatic Detection of Inter-application Permission Leaks in Android Applications [[104]

2013 ACM ISSTA automated testing with targeted event sequence generation [84]

2013 ACM MobiSys SIF: A Selective Instrumentation Framework for Mobile Applications [[157]

2013 IEEE/ACM ASE Characterizing and detecting resource leaks in Android applications [109]

2013 USENIX Security Eﬁ"ect'ive Inter—Component Communication Mapping in Android with Epicc : An Essential Step Towards Holistic
Security Analysis [9]

2013 Springer ESORICS AnDarwin: Scalable Detection of Semantically Similar Android Applications [49]

2013 Other CCIS (W) A3: Automatic Analysis of Android Malware [55]

2013 WoK Tsinghua S&T (J) MobSafe: cloud computing based forensic analysis for massive mobile applications using data mining [96]

2013 ACM PLDI Thresher: precise refutations for heap reachability [159]

2013 ACM CCS The impact of vendor customizations on android security [115]

2013 Springer FASE A grey-box approach for automated GUI-model generation of mobile applications [154]

2013 IEEE/ACM ICSE Estimating mobile application energy consumption using program analysis [66]

2013 ACM CCS An empirical study of cryptographic misuse in android applications [54]

2013 ACM CCS Applntent : Analyzing Sensitive Data Transmission in Android for Privacy Leakage Detection [90]

2013 Other NDSS Detecting passive content leaks and pollution in android applications [119]

2013 ACM OOPSLA Targeted and depth-first exploration for systematic testing of android apps [57]

2012 ACM WiSec DroidChecker : Analyzing Android Applications for Capability Leak [140]

2012 Other NDSS Systematic Detection of Capability Leaks in Stock Android Smartphones. [137]

2012 IEEE WCRE AQUA: Android QUery Analyzer [142]

2012 IEEE MoST (W) Scandal: Static Analyzer for Detecting Privacy Leaks in Android Applications [[114]

2012 IEEE COMPSAC Model-based static source code analysis of java programs with applications to android security [89]

2012 ACM CCS Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security [91]

2012 ACM SAC A framework for static detection of privacy leaks in android applications [93]

2012 ACM SPSM (W) Smartdroid: an automatic system for revealing ui-based trigger conditions in android applications [118]

2012 IEEE HICSS Android: Static analysis using similarity distance [[76]

2012 ACM Internetware Detect and optimize the energy consumption of mobile app through static analysis: an initial research [133]

2012 USENIX HotPower Towards verifying android apps for the absence of no-sleep energy bugs [128]

2012 Springer TRUST AndroidLeaks: Automatically detecting potential privacy leaks in Android applications on a large scale [80]

2012 ACM OOPSLA Refactoring android Java code for on-demand computation offloading [[136]

2012 ACM WiSec Unsafe exposure analysis of mobile in-app advertisements [67]

2012 ACM MobiSys what is keeping my phone awake? characterizing and detecting no-sleep energy bugs in smartphone apps [100]

2012 ACM FSE Automated Concolic Testing of Smartphone Apps [63]

2012 Springer ESORICS Attack of the clones: detecting cloned applications on Android markets [48]

2012 ACM CCS CHEX : Statically Vetting Android Apps for Component Hijacking Vulnerabilities [8]

2012 IEEE MoST (W) I-ARM-Droid: A Rewriting Framework for In-App Reference Monitors for Android Applications [152]

2012 Springer CSS Detecting control flow in smarphones: Combining static and dynamic analyses [75)]

2012 IEEE/ACM ASE Automatically securing permission-based software by reducing the attack surface: An application to android [41]

2012 IEEE MALWARE Tru'stDroid: Pre\{enting the use of SmartPhones for information leaking in corporate networks through the used of
static analysis taint tracking [125]

2012 ACM SPSM (W) Dr . Android and Mr . Hide : Fine-grained Permissions in Android Applications [107]

2012 Elsevier IST () Static analysis of Android programs [4]

2011 ACM EuroSys Clonecloud: elastic execution between mobile device and cloud [34]

2011 IEEE MALWARE Using .Static Ana!ysis for Automatic Assessment and Mitigation of Unwanted and Malicious Activities Within
Android Applications [81]

2011 ACM MobiSys Analyzing Inter-Application Communication in Android [117]

2011 Other BlackHat Android : From Reversing to Decompilation [[74]

(W) stands for workshp; (J) stands for journal; WoK stands for Web of Knowledge.

32

	Introduction
	Background Information on Android and Static Analysis
	Concepts of Static Program Analysis
	Analysis Techniques
	Call-Graph Construction
	Graph Enrichment

	Static Analysis of Android Programs
	Android-specific Analysis Challenges
	Java-inherited Challenges

	Methodology for the SLR
	Research Questions
	Search Strategy
	Search keywords
	Search datasets

	Exclusion Criteria
	Backward Snowballing
	Primary publications selection

	Data Extraction
	Summary of Findings
	Purposes of the Analyses
	Form and Extent of Analysis
	Code Representations and Support Tools
	Fundamental Analysis Methods
	Static Analysis Sensitivities
	Android Specificities

	Availability of Research Output
	Trends and Overlooked Challenges
	Trend Analysis
	Dealing with Analysis Challenges

	Discussions
	Security will remain a strong focus of Android research
	Considering external code is essential for a sound analysis
	Improving basic support tools such as Soot is a priority
	Sensitivities are key in the trade-off between precision and performance
	Android specificities can help improve code coverage and limit over-approximations
	Researchers must strive to provide clean and reusable artifacts
	The booming Android ecosystem is appealing for holistic analysis
	Combining multiple approaches could be the key towards highly precise analysis

	Threats To Validity
	Related Work
	Conclusions
	Acknowledgment
	The Full List of Examined Publications

