Using A Path Matching Algorithm to Detect
Inter-Component Leaks in Android Apps

Li Li, Alexandre Bartel, Jacques Klein, Yves le Traon
University of Luxembourg - SnT, Luxembourg
{li.li, alexandre.bartel, jacques.klein, yves.letraon} @uni.lu

I. INTRODUCTION

Android has become the most popular mobile phone oper-
ating system over the last three years. There are thousands
of applications emerging every day. As of May 2013, 48
billion apps have been installed from the Google Play store,
and as of September 3, 2013, 1 billion Android devices have
been activated'. Meanwhile, the Android operating system also
becomes a worthwhile target for security and privacy attacks.
A major problem in Android is private data leaks. A lot of
data leaks have been reported these years, such as passive
content leaks [?] which cause affected applications to passively
disclose in-application data and capability leaks which analyze
the reachability of a dangerous permission from a public and
unguarded interface.

Many privacy leaks present in Android are the result of
interactions among application components which are the basic
units to build Android applications. However, on Android
no direct code connection exists between two components.
To bridge this gap, we present a tool named IccMatcher
which uses path matching algorithm to detect inter-component
communication (ICC) based leaks. IccMatcher is built on top
of Flowdroid [3], a tool performing single component static
taint analysis and Epicc [4] , a tool for finding ICC links among
components. Both Epicc and Flowdroid leverage the Soot
framework [5] which uses the Dexpler plugin [6] to convert
Android Dalvik bytecode to Soot’s internal representation
called Jimple.

Flowdroid uses a static taint analysis, a kind of data flow
analysis, to keep track values derived from sensitive data. It
first labels the private data that we call source (for instance
a method returning GPS coordinate), and then track the data
by statically analyzing the code. If the private data reaches a
method that sends it outside the app, also called sink method,
we identify this as a private data leak and we tag the path from
the source to the sink as a detected tainted path.

II. ICC PROBLEM

Some specific Android system methods are used to trigger
component communication. We call them ICC methods. The
most used ICC method is the startActivity method for
starting a new Activity.

There are four types of components: a) Activity, represent-
ing the user interface; b) Service, executing tasks in back-
ground; ¢) Broadcast Receiver, receiving messages from other
components or the system; and d) Content Provider, acting

Thttp://en.wikipedia.org/wiki/Android_(operating_system)

as the standard interface to share structured data between
applications. Components use Intent to communicate between
one another. All ICC methods take at least one Intent as their
parameter. Intents can also encapsulate data and thus transfer
data between two components.

Let us consider Listing 1 as an example. Two activi-
ties FirstActivity and SecondActivity are defined
and they use the startActivity ICC method to com-
municate. FirstActivity contains one source method,
getDeviceId, which returns the unique device ID (e.g., the
IMEI for GSM and the MEID or ESN for CSMA phones). We
consider the device id as sensitive data. SecondActivity
contains one sink method, Log. i, which logs data to disk.
Neither FirstActivity nor SecondActivity contains
a tainted path. However, it does exist one data leak from source
method getDeviceIdin FirstActivity to sink method
Log.1i in SecondActivity.

l|class FirstActivity {

2| wvoid onCreate (Bundle state) {

3 String id = telMnger.getDeviceId();

4 Intent i = new Intent (this,
SecondActivity.class);

5 i.putExtra("sensitive", id);

6 this.startActivity(i); }}

7|class SecondActivity {

8| void onCreate (Bundle state) {

9 Intent 1 = getlIntent();

0 String s = i.getStringExtra("sensitive");

1

1
1 Log.i ("GRSRD2014", s); }}

Listing 1. An example code about crossing component data leaks

Static analyses usually rely on call graphs. However, in
Android applications the mechanism of components makes that
no direct code connection exists between two components[1].
This means one component cannot be reached from another
component in the call graph. We refer to this as the /ICC
Problem.

III. PATH MATCHING ALGORITHM

In this section, we present a path matching algorithm able
to detect ICC based privacy leaks between two components.
In order to solve the ICC problem, we define four varieties of
sources or sinks:

e real-sources are methods that return sensitive data of
the application (or Android System).

e real-sinks are methods that send at least one sensitive
data outside the application.

e Dridge-sources are entry point methods of a compo-
nent that can be started and receive data from another
component.

o bridge-sinks are ICC methods which are able to
start and send data to another component, e.g.,
startService.

Algorithm 1 presents our matching algorithm to detect ICC
based privacy leaks. The inputs are 1) ICC links, a set of
ICC links which connect two components, computed by Epicc;
2) IPC (Inter-Procedure Communication) paths, a set of IPC
paths which starts with a source method and ends with a sink
method within a component. 3) SourceAndSink containing sets
for real-sources, real-sinks, bridge-sources and bridge-sinks
methods. The algorithm first builds an ICC graph (line 7).
Then it checks all the IPC paths to mark the corresponding
component node in the ICC graph with start if the path ends
with a bridge sink or end if the path starts with a bridge source
(lines 8-15). Finally, It traverses the marked ICC graph to
detect ICC based paths (lines 16-23). For all edges in the ICC
graph, if the source node is marked as start and the destination
node is marked as end, an ICC based privacy leak is detected.

Algorithm 1 ICC based privacy leak detection algorithm
1: procedure DETECTICCBASEDPRIVACYLEAKS
2: links < ICClinks
: paths < IPCpaths

3
4 sas < SourceAndSink

5: iccPaths < empthSet

6: start < start_marker, end < end_marker
7 graph < buildICCGraph(links)

8 for path in paths do

9: if path. first € sas.bridgeSource then
10: markICC Path(graph, path, end)

11: end if

12: if path.last € sas.bridgeSink then

13: markICC Path(graph, path, start)

14: end if

15: end for

16: for node in graph do

17: children « getChildN odes(graph, node)

18: for childNode in children do

19: if node.hasStart & childN ode.hasEnd then
20: iccPaths.add(node.start, child N ode.end)
21: end if

22: end for

23: end for

24: return iccPaths

25: end procedure

Figure 1 shows the result of applying our path matching
algorithm on the code of Listing 1. First, Epicc computes
an ICC link from FirstActivity to SecondActivity.
Then, Flowdroid computes an IPC path from getDeviceId
method to startActivity method in FirstActivity
and a IPC path from get Intent method to Log.i method
in SecondActivity. Finally, we run our matching al-
gorithm to build the ICC graph. The left node represents
FirstActivity and we mark it as start since it contains
an IPC path ending with a bridge-sink method. The right node
represents SecondActivity and we mark it as end since it

FirstActivity SecondActivity
Btring id = telMinger.getDeviceld(] T aintent | = gefintent()
| o
Intent i = new Intent(this, SecondActivity.class) /’ String s = i.getStringExtra("sensitive")
: 3 : :
/:v : l end marker
i.putExtra("sensitive", id) : Eog.i"EXAMPLET, s] ‘

 start marker , feasource] bridge-source
: this. startActivity ()| =~~~ -~
bridge-sink;

Marked ICC graph of our motivating example listed in Listing 1

contains an IPC path starting with a bridge-source method. The
two nodes’ marker match so there is one ICC based privacy
leak between FirstActivity and SecondActivity.

One special ICC method, startActivityForResult,
exists in Android system. It starts another component and
then waits for it to finish. Once the other component fin-
ishes, it continues running with the result returned from the
other component. Because it has more complicated semantics
compared to common ICC methods that only trigger one-
way communication between components, we handle them
specifically. IV. CASE STUDY

InsecureBank?> is a vulnerable Android application
created by Paladion Inc. specifically for the purpose
of evaluating privacy leak detection tools. Flowdroid
finds all seven data leaks (within component) without
any false positives nor false negatives. We ran our path
matching algorithm based tool IccMatcher on InsecureBank,
and we find a privacy leak crossing two components
from com.android.insecurebank.LoginScreen
to com.android.insecurebank.PostLogin. In
LoginScreen, a password is obtained from EditText
and is stored into an Intent which is sent to PostLogin
by the ICC method startActivity. In PostLogin,
the password is sent outside InsecureBank through the
postHttpContent method.

Acknowledgement: this work has been done in collabora-
tion with the team of Prof. Eric Bodden (TU Darmstadt) and
the team of Prof. Patrick McDaniel (Penn State University).

REFERENCES

[1] Li Li et al. Detecting privacy leaks in Android Apps. In: International
Symposium on Engineering Secure Software and Systems - Doctoral
Symposium (ESSoS-DS2014). 2014

[2] Michael Grace et al. Systematic detection of capability leaks in stock
Android smartphones. In: Proceedings of the 19th Annual Symposium
on Net- work and Distributed System Security. 2012

[3] Steven Arzt et al. FlowDroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for Android Apps. In: the
35th annual ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI 2014). 2014

[4] Damien Octeau et al. Effective inter-component communication mapping
in android with epicc: An essential step towards holistic security analysis.
In: Proceedings of the 22nd USENIX Security Symposium. 2013.

[5] Patrick Lam et al. The Soot framework for Java program analysis:
a retrospective. In: Cetus Users and Compiler Infastructure Workshop
(CETUS 2011). 2011

[6] Alexandre Bartel et al. Dexpler: Converting Android Dalvik Bytecode
to Jimple for Static Analysis with Soot. In: ACM Sigplan International
‘Work- shop on the State Of The Art in Java Program Analysis. Beijing,
China, 2012

Zhttp://www.paladion.net/downloadapp.html

	Introduction
	ICC Problem
	Path Matching Algorithm
	Case Study
	References

