
ACMiner: Extraction and Analysis of Authorization Checks in
Android’s Middleware

Sigmund Albert
Gorski III

North Carolina State
University

sagorski@ncsu.edu

Benjamin Andow
North Carolina State

University
beandow@ncsu.edu

Adwait Nadkarni
William & Mary

nadkarni@cs.wm.edu

Sunil Manandhar
William & Mary
sunil@cs.wm.edu

William Enck
North Carolina State

University
whenck@ncsu.edu

Eric Bodden
Paderborn University

eric.bodden@uni-paderbo
rn.de

Alexandre Bartel
University of Luxembourg
alexandre.bartel@uni.lu

ABSTRACT

Billions of users rely on the security of the Android platform to

protect phones, tablets, and many diferent types of consumer elec-

tronics. While Android’s permission model is well studied, the

enforcement of the protection policy has received relatively little at-

tention. Much of this enforcement is spread across system services,

taking the form of hard-coded checks within their implementations.

In this paper, we propose Authorization Check Miner (ACMiner),

a framework for evaluating the correctness of Android’s access

control enforcement through consistency analysis of authorization

checks. ACMiner combines program and text analysis techniques to

generate a rich set of authorization checks, mines the corresponding

protection policy for each service entry point, and uses association

rule mining at a service granularity to identify inconsistencies that

may correspond to vulnerabilities. We used ACMiner to study the

AOSP version of Android 7.1.1 to identify 28 vulnerabilities relat-

ing to missing authorization checks. In doing so, we demonstrate

ACMiner’s ability to help domain experts process thousands of

authorization checks scattered across millions of lines of code.

ACM Reference Format:

Sigmund Albert Gorski III, Benjamin Andow, Adwait Nadkarni, Sunil Man-

andhar, William Enck, Eric Bodden, and Alexandre Bartel. 2019. ACMiner:

Extraction and Analysis of Authorization Checks in Android’s Middleware.

In Ninth ACM Conference on Data and Application Security and Privacy (CO-

DASPY ’19), March 25ś27, 2019, Richardson, TX, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3292006.3300023

1 INTRODUCTION

Android has become the world’s dominant computing platform,

powering over 2 billion devices by mid-2017 [10]. Not only is An-

droid the primary computing platform for many end-users, it also

has signiicant use by business enterprises [33] and government

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY ’19, March 25ś27, 2019, Richardson, TX, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6099-9/19/3. . . $15.00
https://doi.org/10.1145/3292006.3300023

agencies [34, 37]. As a result, any security law in the Android plat-

form is likely to cause signiicant and widespread damage, lending

immense importance to evaluating the platform’s security.

While Android is built on Linux, it has many diferences. A key

appeal of the platform is its semantically rich application program-

ming interfaces (APIs) that provide application developers simple

and convenient abstractions to access information and resources

(e.g., retrieve the GPS location, record audio using the microphone,

and take a picture with the camera). This functionality, along with

corresponding security checks, is implemented within a collec-

tion of privileged userspace services. While most Android secu-

rity research has focused on third party applications [7, 13, 15, 18,

19, 35, 36, 39], the several eforts that consider platform security

highlight the need for more systematic evaluation of security and

access control checks within privileged userspace services (e.g.,

evidence of system apps re-exposing information without security

checks [25, 43], or missing checks in the Package Manager service

leading to Pile-Up vulnerabilities [44]).

To date, only two prior works have attempted to evaluate the

correctness of access control logic within Android’s system ser-

vices. Both Kratos [38] and AceDroid [2] approximate correctness

through consistency measures, as previously done for evaluating

correctness of security hooks in the Linux kernel [12, 29, 41]. How-

ever, these prior works have limitations. Kratos only considers a

small number of manually-deined authorization checks (e.g., it

excludes App Ops checks). AceDroid considers a larger set of au-

thorization checks, but these are still largely manually deined,

primarily through observation. Kratos performs coarse-grained

analysis using call-graphs, leading to imprecision. AceDroid’s pro-

gram analysis provides better precision, but oversimpliies its access

control representation, making it diicult to identify vulnerabilities

within single system images.

In this paper, we propose Authorization Check Miner (ACMiner),

a framework for evaluating the correctness of Android’s access

control enforcement through consistency analysis of authoriza-

tion checks. ACMiner is based on several novel insights. First, we

avoid identiication of protected operations (a key challenge in the

space) by considering program logic between service entry points

and code that throws a SecurityException. Second, we propose a

semi-automated method of discovering authorization checks. More

speciically, we mine all constants and names of methods and vari-

https://doi.org/10.1145/3292006.3300023
https://doi.org/10.1145/3292006.3300023


ables that inluence conditional logic leading to throwing a Securit-

yException. From this dataset, we identify security-relevant values

(e.g., łrestrictedž) and develop regular expressions to automatically

identify those conditions during program analysis that mines policy

rules from the code. Third, we use association rule mining to iden-

tify inconsistent authorization checks for entry points in the same

service. Association rule mining has the added beneit of suggest-

ing changes to make authorization checks more consistent, which

is valuable when triaging results. By applying this methodology,

ACMiner allows a domain expert (i.e., a developer familiar with

the AOSP source code) to quickly identify missing authorization

checks that allow abuse by third-party applications.

We evaluated the utility of ACMiner by applying it to the AOSP

code for Android 7.1.1. Of the 4,004 total entry points to system

services, ACMiner identiied 1,995 with authorization checks. Of

these entry points, the association rule mining identiied inconsis-

tencies in 246. We manually investigated these 246 entry points

with the aid of the rules suggested by the association rule mining,

which allowed us to identify 28 security vulnerabilities. ACMiner

not only reduced the efort required to analyze system services (i.e.,

by narrowing down to only 246 entry points out of 4004), but also

allowed us to rapidly triage results by suggesting solutions. Out of

the 28 security vulnerabilities, 7 were in security-sensitive entry

points that may be exploited from third-party applications, and an

additional 12 were in security-sensitive entry points that may be

exploited from system applications. The rest were in entry points

with relatively low security value. All 28 vulnerabilities have been

reported to Google. At the time of writing, Google has conirmed 2

of these vulnerabilities as łmoderate severity.ž

This paper makes the following contributions:

• We design and implement ACMiner, a framework that enables

a domain expert to identify and systematically evaluate incon-

sistent access control enforcement in Android’s system services.

Our results show that this analysis is not only useful for

identifying existing vulnerabilities, but also inconsistencies

that may lead to vulnerabilities in the future.

• We combine program and text analysis techniques to generate

a rich set of authorization checks used in system services. This

technique is a signiicant improvement over prior approaches

that use manually-deined authorization checks.

• We use ACMiner to evaluate the AOSP version of Android

7.1.1 and identify 28 vulnerabilities. All vulnerabilities have

been reported to Google, which at the time of writing has

classiied 2 as łmoderate severity.ž

This paper describes how ACMiner can systematically analyze

the consistency of the authorization checks in the system services.

However, ACMiner may also be useful for other forms of analy-

sis. For instance, ACMiner can aid regression testing, as it can be

extended to highlight changes to the policy implementation on a

semantic level. The information extracted by ACMiner can also

be used to study the evolution of access control in Android, po-

tentially discovering new vulnerabilities. Finally, since changes by

OEMs have historically introduced vulnerabilities, OEMs can use

ACMiner to validate their implemented checks against AOSP.

The remainder of this paper proceeds as follows. Section 2 pro-

vides background. Section 3 describes the challenges and provides

1 // Entry point with correct authorization checks

2 boolean hasBaseUserRestriction(String key , int userId) {

3 checkManageUsersPermission("hasBaseUserRestriction");

4 // Unique check without a SecurityException

5 if (! UserRestrictionsUtils.isValidRestriction(key))

6 return false;

7 ...}

8

9 // Entry point missing checkManageUsersPermission

10 boolean hasUserRestriction(String key , int userId) {

11 if (! UserRestrictionsUtils.isValidRestriction(key))

12 return false;

13 ...}

14

15 void checkManageUsersPermission(String message) {

16 if (! hasManageUsersPermission ())

17 throw new SecurityException ();}

18

19 boolean hasManageUsersPermission () {

20 int callingUid = Binder.getCallingUid ();

21 return UserHandle.isSameApp(callingUid ,

22 Process.SYSTEM_UID)

23 || callingUid == Process.ROOT_UID

24 || ActivityManager.checkComponentPermission(

25 "android.permission.MANA’E_USERS",

26 callingUid , -1, true) ==

27 PackageManager.PERMISSION_’RANTED ;}

Figure 1: Vulnerability found in UserManagerService by our tool

an overview of ACMiner. Section 4 describes the design of AC-

Miner in detail. Sections 5 and 6 describe our analysis of the system

services of AOSP 7.1.1. Section 7 describes the limitations of our

approach. Section 8 discusses related work. Section 9 concludes.

2 BACKGROUND AND MOTIVATION

The Android middleware is implemented using the same compo-

nent abstractions as third-party applications [16]: activities, content

providers, broadcast receivers, and services. In this paper, we only

consider service components, which provide daemon-like func-

tionality. Apps interface with service components via the Binder

inter-process communication (IPC) mechanism, which consists of

sending parcel objects that indicate the target interface method

being called via an integer. For the most part, Android’s system

services use the Android Interface Description Language (AIDL) to

automatically generate the code that unmarshalles these parcels.

Moreover, when interfacing with system services, third party apps

rely on public APIs implementing a proxy to construct the parcel.

When the parcel is unmarshalled by the service interface, the argu-

ments are passed to a stub that calls the corresponding entry point

method in the service component.

Android uses two broad techniques to enforce access control.

For coarse-grained checks (i.e., at the component level), the Ac-

tivity Manager Service (AMS) enforces policy speciied in appli-

cation manifest iles. This paper focuses on ine-grained checks

(i.e., at the service entry point level), which are enforced using

hard-coded logic within the service implementation. This hard-

coded logic includes variants of the checkPermission method, Unix

Identiier (UID) checks, as well as many subtle checks based on

service-speciic state. Prior work [2, 38] has primarily relied on

manual enumeration of these checks, which is error prone. To sim-

plify discussion in this paper, we refer to such methods that return

or check Android system state as context queries.

Figure 1 provides a motivating example for this paper, which

contains a vulnerability discovered by ACMiner. The simpliied



code snippet is from the User Manager Service, which provides core

functionality similar to the Activity Manager and Package Manager

Services. In the igure, there are two entry points: hasBaseUserRes-

triction and hasUserRestriction. The entry points perform very

similar functionality, but have inconsistent authorization checks.

Speciically, hasBaseUserRestriction throws a SecurityException

if the caller does not have the proper UID or permission.

This example is particularly apropos to ACMiner, because hasU-

serRestriction does not call any of the context queries considered

by prior work [2, 38]. It also does not throw a SecurityException.

Without knowledge that isValidRestriction is an authorization

check, no form of consistency analysis could have identiied that

hasUserRestriction has a missing check.

3 OVERVIEW

The goal of this paper is to help a domain expert quickly identify

and assess the impact of incorrect access control logic in imple-

mentations of system services in Android. As with most nontrivial

software systems, no ground truth speciication of correctness ex-

ists. Rather, the łground truthž resides largely within the heads of

the platform developers. Prior literature has approached this type

of problem by approximating correctness with consistency. The

intuition is that system developers are not malicious and that they

are likely to get most of the checks correct. The approach was irst

applied to security hook placement in the Linux kernel [12, 29, 41]

and more recently the Android platform [2, 38].

Evaluating authorization check correctness via consistency anal-

ysis requires addressing the following challenges.

• Protected Operations: Nontrivial systems rarely have a clear

speciication of the functional operations that require pro-

tection by the access control system. Protected operations

range from accessing a device node to reading a value from a

private member variable. Axplorer [6] attempts to enumerate

protected operations for Android; however, the speciication

is far from complete.

• Authorization Checks: What constitutes an authorization

check is vague and imprecise. While some authorization

checks are clear (e.g., those based on checkPermission and

getCallingUid), many others are based on service-speciic

state and the corresponding authorization checks use a vari-

ety of method and variable names.

• Consistency: The granularity and type of consistency impacts

the precision and utility of the analysis. While increasing the

scope of relevant authorization checks increases the noise in

the analysis, not considering all authorization checks (as in

Kratos [38]) or using heuristics to determine relevancy (as in

AceDroid [2]) raises the risk of not detecting vulnerabilities.

ACMiner addresses these challenges through several novel in-

sights. First, ACMiner avoids the need to specify protected opera-

tions by considering program logic between service entry points

and code that throws a SecurityException. Our intuition is that if

one control low path leads to a SecurityException, an alternate

control low path leads to a protected operation. Furthermore, the

conditional logic leading to the SecurityException describes the

authorization checks. However, we found that not all authoriza-

tion denials lead to a SecurityException, therefore, we also include

(1) Program analysis using 
security exceptions, known checks

(2) Expert review and 
text analytics

 (3) Association 
rule mining

All API Calls and code

Potential Authorization checks

Actual authorization checks

Inconsistent 

APIs

Volume of information 
needing expert attention

Figure 2: Overview of ACMiner. At each stage, ACMiner signii-

cantly reduces the information an expert needs to analyze.

entry points that contain known authorization checks. Second,

ACMiner semi-automatically discovers new authorization checks

using a combination of static program analysis and textual pro-

cessing. More speciically, ACMiner identiies all of the method

names, variable names, and strings that inluence the conditional

logic leading to a SecurityException. The security-relevant values

are manually reined and used to generate regular expressions that

identify a broader set of authorization checks within service im-

plementations. Third and inally, ACMiner uses association rule

mining for consistency analysis. For each entry point, ACMiner

uses static program analysis to extract a set of authorization checks.

Association rule mining compares the authorization check sets

between entry points in the same service. The analysis produces

suggestions (called łrulesž) of how the sets should change to make

them more consistent. These rules include conidence scores that

greatly aid domain experts when triaging the results. This general

approach is depicted in Figure 2.

To more concretely understand how ACMiner operates, consider

the discovery of the vulnerability shown in Figure 1. As a pre-

processing step, ACMiner helps a domain expert semi-automatically

identify authorization checks. First, ACMiner determines that the

return value of isValidRestriction controls low from the entry

point hasBaseUserRestriction to a SecurityException. As such, this

method name, along with many security irrelevant names are given

to a domain expert. The domain expert then identiies security

relevant terms (e.g. łrestrictionł), which ACMiner consumes as

part of a regular expression. Next, ACMiner mines the policy of

the User Manager Service, extracting a policy for both hasBaseU-

serRestriction and hasUserRestriction, with the policy for hasU-

serRestriction only being extracted because isValidRestriction

was identiied as an authorization check. For each entry point, the

policy is then encoded as a set of authorization checks (e.g. isVali-

dRestriction and ROOT_UID == getCallingUid()). Finally, ACMiner

performs association rule mining to suggest set changes that make

the policy more consistent. Such suggestions led us to discover the

vulnerability in hasUserRestriction.

4 DESIGN

ACMiner is constructed on top of the Java static analysis framework

Soot [30, 42] and has been largely parallelized so as to improve

the run time of the complex analysis of Android’s services. The

design of ACMiner can be divided into three phases: (ğ4.1) Mining

Authorization Checks, (ğ4.2) Reining Authorization Checks, and

(ğ4.3) Inconsistency Analysis.



Android
System
Image

Construct Call
Graph

Identify
Authorization

Checks

Output
Authorization

Checks

Context
Queries

Descripton

Control
Predicate

Filter
System

Classes ZIP
Exclude 

List
Authorization

Checks

Consistency
Analysis

Miner
ACMiner 

Figure 3: ACMiner’s processing stages and input iles.

4.1 Mining Authorization Checks

The irst phase of ACMiner is mining authorization checks. This

phase consist of the following program analysis challenges: (ğ4.1.1)

Call Graph Construction, (ğ4.1.2) Identifying Authorization-Check

Statements, and (ğ4.1.3) Representing Authorization Checks.

4.1.1 Call Graph Construction. Authorization checks are mined

by traversing a call graph of the service implementation. ACMiner

constructs call graphs using the following three steps.

Extracting Java Class Files: ACMiner extracts a .jar containing

all the class iles of the Android middleware in Soot’s Jimple format

from Android’s system.img. This .jar containing Jimple iles is then

used on all subsequent runs of ACMiner. The implementation of

this approach is detailed in the extended version [24].

Extracting System Services and Entry Points: Android’s mid-

dleware is composed of isolated services that communicate through

predeined Binder boundaries. This division allows ACMiner to an-

alyze each service separately, by deining each service by the code

reachable through its Binder entry points. ACMiner extracts system

services and their entry points similar to prior work [2, 5, 38]. For

implementation details, please see the extended version [24].

Reducing the Call Graph:ACMiner constructs a call graph repre-

senting all possible transitive calls from the entry points. ACMiner

uses the Class Hierarchy Analysis (CHA) [11], which is guaranteed

to provide an over-approximation of the actual runtime call graph.

In contrast, Kratos and AceDroid use other potentially more accu-

rate call graph builders (i.e., SPARK [32] and its WALA equivalent),

which use points-to analysis to construct a less complete under-

approximation of the runtime call graph. The loss of completeness

occurs when constructing call graphs for libraries and other Java

code without main methods. Therefore, it is important to note that

unlike the prior work, ACMiner is more complete and guaranteed

to include all paths containing authorization checks.

Since CHA call graphs are coarse over-approximations of the

runtime call graph, ACMiner must apply heuristics to mitigate

call graph bloat. When resolving targets for method invocations,

CHA considers every possible implementation of the target method

whose declaring type is within the type hierarchy of the call’s

receiver type. If the invoked method is deined in a widely used

interface or superclass, the resolution may identify hundreds of tar-

gets for a single invocation. Thus, the resulting CHA call graph for

the Android middleware is too large to be analyzed in a reasonable

amount of time and memory [31].

To mitigate call graph bloat, we manually deined a list of classes

and methods to exclude from the analysis, which become cutof

points in the call graph. We ensured that the class or method subject

to exclusion did not contain, lead to, or was used in an authoriza-

tion check. While the exclude list may require revision for newer

versions of AOSP or modiications made by vendors, the creation of

the exclude list is a largely one-time efort. Please see the extended

version [24] for a detailed description of the exclusion procedure

and our website [1] for a full list of excluded classes/methods.

Finally, when analyzing an entry point, ACMiner treats all other

entry points as cutof points in the call graph. This decision further

reduces call graph bloat. Unfortunately, it also introduces unsound-

ness into the call graph, which we discuss in Section 7.

4.1.2 Identifying Authorization Check Statements. Once ACMiner

has the call graph for all entry points, the next step is to identify

authorization checks. As described in Section 2, the complete set of

authorization checks is unknown. ACMiner takes a two pronged

approach to identifying authorization checks. First, it identiies

all possible checks leading to a protected operation (this section).

Second, it reines the list of possible authorization checks based on

code names and string values (Section 4.2). To describe this process,

we must irst deine a control predicate.

Deinition 1 (Control Predicate). A conditional statement (i.e., an

if or switch statement) whose logic authorizes access to some

protected operation.

Identifying protected operations is nontrivial, as they may range

from accessing a device node to returning a privatemember variable.

However, even if we knew the protected operations, we would still

need to determine which conditional statements are control predi-

cates. ACMiner uses the key observation that Android frequently

throws a SecurityException when access is denied. Therefore, AC-

Miner marks all conditional statements on the control low path

between entry points and the statement throwing the SecurityExc-

eption as potential control predicates.

While throwing a SecurityException is the most common way

Android denies access, it is not the only way. Some entry points

deny access by returning false or even by returning empty data.

Such denials are not easily identiiable. Fortunately, as shown in

Figure 1, Android often groups authorization checks into methods

to simplify placement. We refer to such groups of authorization

checks as context queries.

Deinition 2 (Context Query). A method consisting entirely of a

set of control predicates, calls to other context queries, and/or whose

return value is frequently used as part of a control predicate.

By identifying context queries, ACMiner can mark control pred-

icates not on the path between a entry point and a thrown Sec-

urityException, thereby making the authorization check mining

more complete. As shown in Figure 3, ACMiner is conigured with

a input ile that speciies context queries. Our method for deining

this input is described in Section 4.2.

Using these insights, ACMiner identiies authorization checks

with fairly high accuracy. The identiication procedure is as follows.

First, ACMiner marks all conditional statements inside a context

query and the subsequent transitive callees as control predicates

for the entry point. Next, ACMiner performs a backwards inter-

procedural control low analysis from each statement throwing a

SecurityException and each context query invocation to the entry

point. During this backwards analysis, ACMiner marks all condi-



tional statements on the path as potential control predicates. Finally,

to capture control predicates that occur without a SecurityExcept-

ion, ACMiner performs a forward inter-procedural def-use analysis

on the return value of a context query. During this analysis, AC-

Miner marks any conditional statement that uses the return value

as a potential control predicate. Note, ACMiner does not currently

track the return value through ields, as this was found to be too

noisy. However, ACMiner can track the return value through vari-

able assignments, arithmetic operations, array assignments, and

the passed parameters of a method invoke.

4.1.3 Representing Authorization Checks. ACMiner represents the

authorization checks for each entry point as a set of context queries

and control predicates.We initially represented authorization checks

as boolean expressions representing the control low decisions that

lead to a thrown SecurityException or invoked context query. This

representation would allow ACMiner to verify the existence, order,

and the comparison operators of the authorization checks. However,

for complex services (e.g., the Activity Manager) this representation

was infeasible due to the large number of authorization checks. Ad-

ditionally, we found that without more complex context-sensitive

analysis, ACMiner could not extract authorization checks involving

implicit lows. Therefore, we simpliied our consistency analysis to

only consider the existence of an authorization check for an entry

point. This approach requires two reasonable correctness assump-

tions: (1) all authorization checks have been placed and ordered

correctly, and (2) all control predicates have the correct comparison

operator. ACMiner cannot detect violations of these assumptions.

The existence of authorization checks is easily represented as a

set; however some processing is required. For each variable in a au-

thorization check statement, ACMiner must substitute all possible

values for that variable. More speciically, for each control pred-

icates and context queries statement (i.e., conditional or method

invoke statement), ACMiner must generate a list containing the

product of all the possible variables and the values for each variable.

To reduce redundant output, ACMiner only computes the product

for context queries that do not have a return value or whose return

value is not used in a control predicates.

For this expansion, ACMiner applies an inter-procedural def-use

analysis to each variable used in a statement, thereby obtaining

the set of all possible values for that variable from the entry point

to this speciic use site. It then computes the product of these sets

to achieve the complete set of authorization checks for a single

statement. If a variable is assigned a value from the return of a

method call, ACMiner does not consider the possible return values

of the method, but instead includes a reference to all the possible

targets of the method call. Similarly, if a variable is assigned a

value from the ield of a class or an array, ACMiner includes only a

reference to the ield or array instead of all the possible values that

may be assigned to the ield or array. As such, while the list of values

largely consists of constants, it may also contain references to ields,

methods and arrays. The resulting combination of all the iterations

of values for each control predicate and each required context query

of an entry point makes up the inal set of authorization checks

output by ACMiner.

The resulting set has the potential to be exponentially large.

To prevent this growth and to remove noise in ACMiner’s output,

Table 1: Initial List of Context Queries
Classes Methods

Context

ContextImpl

ContextWrapper

enforcePermission

enforceCallingPermission

enforceCallingOrSelfPermission

checkPermission

checkCallingPermission

checkCallingOrSelfPermission

AccountManagerService checkBinderPermission

LocationManagerService checkPackageName

IActivityManager

ActivityManagerProxy

ActivityManagerService

checkPermission

ActivityManagerService

ActivityManager

checkComponentPermission

checkUidPermission

IPackageManager

IPackageManager$Stub$Proxy

PackageManagerService

checkUidPermission

checkPermission

we apply several simpliications to the authorization checks (see

the extended version [24]). These simpliications are designed to

increase the number of authorization checks that are equivalent

from a security standpoint and in no way afect the completeness

of the authorization checks.

4.2 Reining Authorization Checks

The techniques in Section 4.1.2 identify potential control predicates;

however, not all conditional statements are authorization checks.

Performing consistency analysis at this point would be infeasible

due to the excessive noise in the data. Therefore, ACMiner uses a

one-time, semi-automated method to signiicantly reduce noise.

Our key observation is that Section 4.1 over approximates au-

thorization checks on the path from entry points to a thrown Se-

curityException or context query. From this over-approximation,

ACMiner can generate a list of all the strings and ields used in the

conditional statements, a list of the methods whose return values

are used in the conditional statements, and the methods containing

the conditional statements. These values can be manually classiied

as authorization-related or not. The general reinement procedure

is as follows: (1) a domain expert ilters out values not related

to authorization; (2) the reined list is translated into generalized

expressions; (3) ACMiner uses the generalized expressions to au-

tomatically ilter out values not related to authorization; (4) the

generalized expressions are reined until the automatically gener-

ated list is close to that deined by the domain expert.While creating

generalized expressions is time consuming, they can be used to

analyze multiple Android builds with minimal modiications.

The speciic reinement procedure is divided into two phases:

(ğ4.2.1) identifying additional context queries, and (ğ4.2.2) reining

control predicate identiication.

4.2.1 Identifying Additional Context ueries. ACMiner uses con-

text queries as indicators of the existence of authorization checks

when no SecurityException is thrown. Our initial list of context

queries, shown in Table 1, was very limited and only contained 33

methods. To expand this list we performed the following steps: (1)

run ACMiner as described in Section 4.1 using the initial list of

context queries, (2) from the marked conditional statements, gener-

ate a list of the methods containing these conditional statements

and the methods whose return values are used in these conditional

statements, (3) have a domain expert inspect the list and identify

methods that match our deinition of a context query, and add these

to our list of context queries, and (4) repeat steps 1→3 until no new

context queries are added to the list. For Android AOSP 7.1.1, this



(and (or (starts-with-package android.)

(starts-with-package com.android. ))

(regex-name-words `^( enforce|has|check )\s

([a-z\s]+\s)? permission(s)?\b`)

(not (equal-package android.test ))...))

Figure 4: Example expressions to describe context queries.

procedure took about 48 hours and increased the number of context

queries to 620 methods.

To make this list reusable, we translate it into a set of generalized

expressions that describe context queries across diferent Android

versions. The expressions consist of regular expressions and string

matches for the package, class, and name of a method, and also

include conditional logic. An example expression is shown in Fig-

ure 4. Overall, we deined 49 generalized expressions to describe

context queries for Android AOSP 7.1.1, which took <10 hours.

The expressions enabled ACMiner to identify an additional 255

methods, resulting in a total of 875 context queries. Please see the

extended version [24] for details on the translation procedure and

our website [1] for the expression-list.

4.2.2 Refining Control Predicate Identification. To reine the over-

approximation of authorization checks, ACMiner again uses a semi-

automated method of reinement, this time for control predicates.

The process begins by running ACMiner with the reined context

queries from Section 4.2.1. The expert then inspects lists of strings,

ields, and methods for the potential control predicates, removing

those not related to authorization.

From our exploration, we discovered a number of diferent cate-

gories of control predicates. Some we were aware of such as those

involving UID, PID, GID, UserId, AppId, and package name. However,

even within these categories, we discovered new ields, methods,

and contexts in which checks are performed.We also discovered pre-

viously unknown categories of control predicates including those:

(1) involving SystemProperties, (2) involving lags, (3) performing

permission checks using the string equals method instead of the

standard check permission methods, (4) checking for speciic intent

strings, and (5) checking boolean ields in speciic classes. Finally,

we discovered that a signiicant amount of noise was generated by

the conditional statements of loops and sanity checks such as null

checks. Using all of the information gained from the exploration of

elements related to possible control predicates, we deined a ilter

that reines control predicate and reduces the overall noise.

Overall, the exploration took about 56 hours. We deined a 41-

rule ilter in about 16 hours (see our website [1] for the actual ilter

and the extended version [24] for the speciication process). The

application of the ilter for Android AOSP 7.1.1 reduced what AC-

Miner considered to be control predicates from 25808 to 3308. Such

a signiicant reduction not only underscores the need for a ilter

but also makes the consistency analysis (Section 4.3) more feasible.

4.3 Consistency Analysis

The inal step of ACMiner is consistency analysis of authorization

checks for each entry point. In this paper, we perform consistency

analysis of all entry points within a service. However, the method-

ology may work across multiple services, or even across diferent

OEM irmwares. ACMiner performs consistency analysis by auto-

matically discovering underlying correlative relationships between

sets of authorization checks. Speciically, ACMiner adopts a targeted

isValidRestriction(String)

X

hasManageUsersPermission()

checkComponentPermission(MANAGE_USERS,

getCallingUid(), -1, true)

ROOT_UID == getCallingUid()

isSameApp(SYSTEM_UID, getCallingUid())

Y

(a) Association Rule

API X→ Y

hasBaseUserRestriction ✓

setUserRestriction ✓

hasUserRestriction X

(b) Entry Points For Rule

Figure 5: (a) shows an association rule generated from the code in

Figure 1 and (b) illustrates how the irst 2 entry points satisfy the

rule, while hasUserRestriction does not, indicating it contains one

or more inconsistent authorization checks.

approach for association rule mining by using constraint-based

querying. It then uses these association rules to predict whether an

entry point’s authorization checks are consistent. The results are

presented to a domain expert for review.

Figure 5a shows an example association rule generated by AC-

Miner from the code in Figure 1. X and Y are sets of authorization

checks found in entry points. The rule states that if an entry point

has check(s) from the set X , then it must also have the check(s) in

setY . ACMiner then uses these generated rules to identify potential

vulnerabilities by reporting entry points that violate the learned

rules (i.e., if an entry point has all of the checks in X , but it is

missing checks inY , then a violation occurs). For instance, Figure 5b

shows the three entry points that match X for the rule in Figure 5a,

out of which hasUserRestriction fails to satisfy the rule (it does

not contain checkManageUsersPermission). On closer inspection, we

discovered that all three entry points either set or get information

about user restrictions. Moreover, the functionality of hasUserR-

estriction is nearly identical to hasBaseUserRestriction, which

suggests checkManageUsersPermission is needed. As seen in these

examples, ACMiner allows an expert to only compare entry points

that are close in terms of their authorization checks, which is more

precise than comparing all entry points to one another.

The remainder of this section discusses ACMiner’s approach to

eiciently discover these association rules and how ACMiner uses

them to detect inconsistencies in authorization checks.

4.3.1 Association Rule Mining. Association rule mining discovers

correlative relationships between sets of authorization checks, A =

{i1, i2, · · · , in }, across a set of entry points, E = {t1, t2, · · · , tm }

where each entry point in E contains a subset of the items in A. An

association rule takes the form X =⇒ Y where X (antecedent)

and Y (consequent) are sets of authorization checks and X and Y

are disjoint, i.e., X ⊆ A and Y ⊆ A and X ∩ Y = ∅.

To avoid an excessive number of association rules, ACMiner uses

two statistical constraints (support and conidence) to remove can-

didate association rules that are less than the thresholds minimum

support (minsup) and minimum conidence (minconf ). Let α(I ) rep-

resent the set of entry points in E that contain the authorization

checks I ⊆ A, i.e., α(I ) = {t ∈ E | ∀i ∈ I , i ∈ t}. The support of an

association rule X =⇒ Y is the probability that a set of autho-

rization checks Z = X ∪ Y appears in the set of transactions E, i.e.,

σ (Z ) =
|α (Z ) |
|E |

. The conidence of an association rule is an estimate

of the conditional probability of the association rule P(Y |X ) where



X =⇒ Y and can be calculated as conf(X =⇒ Y ) =
σ (X∪Y )
σ (X )

.

While association rule mining has been applied to similar prob-

lems by prior work [28], the large transaction size (i.e., number

of authorization checks in an entry point) in our problem domain

makes general association rule mining algorithms infeasible due to

their exponential complexity. Therefore, ACMiner uses two main

optimizations to reduce the complexity to polynomial time.

First, ACMiner only generates a subset of the association rules

called closed association rules [40]. An association rule X =⇒ Y

is closed if X ∪ Y is a frequent closed itemset. A frequent closed

itemset is a set of authorization checks C ⊆ A where the support

of C is greater than minsup and there does not exist a superset C ′

that has the same support as C . C is closed if β(α(C)) = C where

β(T ) represents the largest set of common authorization checks

present in the entry pointsT whereT ⊆ E, i.e., β(T ) = {i ∈ A | ∀t ∈

T , i ∈ t}. Note that only mining frequent closed itemsets is loss-

less, because all frequent itemsets can be generated from the set

of frequent closed itemsets, as proven by Zaki and Hsiao [45]. Our

proof that closed association rules also do not result in information

loss can be found in the extended version [24].

Second, ACMiner generates closed association rules in a targeted

manner by placing constraints on the authorization checks that

appear in the antecedent of the association rule. Since the goal

of consistency analysis is to predict whether an entry point’s im-

plementation of authorization checks is consistent, we are only

interested in generating association rules where the antecedent of

the association rule is a subset of the entry point’s authorization

checks (i.e., X ⊆ Aj where Aj is the authorization checks of en-

try point ej ). For example, consider Aj = {i1, i2, i3} and we have

two frequent closed itemsets {i1, i2, i3, i4} and {i5, i6, i7}. The as-

sociation rule {i1, i2, i3 =⇒ i4} is useful, as it could potentially

hint that the authorization checks in Aj is inconsistent and should

also contain i4. However, all of the association rules from the set

{i5, i6, i7} do not provide additional information on the consistency

of authorization checks in Aj , as the two sets are disjoint.

Further, assuming that the authorization checks that are present

within an entry point are correct, we can force the antecedent to

be constant. In particular, when generating association rules from

a frequent closed itemset I for an entry point Aj , we set X = Aj ∩ I

and can generate association rules by varying the items in Y . If we

reduce the authorization checks in X , then we are making the rule

less relevant to the consistency of the entry pointAj while keeping

X constant only produces the most relevant association rules.

4.3.2 Inconsistency Detection and Output Generation. ACMiner

uses the association rules discussed in Section 4.3.1 to analyze the

consistency of an entry point’s authorization checks. To minimize

the amount of manual efort required to verify the presence of

an inconsistency, we ensure the output only contains high coni-

dence rules by setting minconf to 85%. Moreover, as we want the

authorization checks in the consequent of an association rule to be

formed by at least 2 entry points, we set the minsup to 2
|E |

.

While generating the association rules, we mark an entry point’s

authorization checks as consistent if there exists a frequent closed

itemset that contains the exact same authorization checks as the

entry point, as this hints that the entry point’s authorization checks

are consistent with another entry point’s authorization checks. In

particular, entry point ej ’s authorization checks Aj is consistent if

∃C ∈ A|C = Aj ∧ β(α(C)) ∧ σ (C) ≥ 2
|E |

. In contrast, we mark an

entry point’s authorization checks as potentially inconsistent if an

association rule exists where the entry point’s authorization checks

are the antecedent of the rule and the consequent is not empty (i.e.,

∃X =⇒ Y |X ⊆ Aj ∧ Y , ∅).

ACMiner outputs an HTML ile for the domain expert to review

for each association rule representing a potentially inconsistent

entry point. The HTML ile contains the set of supporting autho-

rization checks for the association rule (i.e. the antecedent), the set

of authorization checks being recommended by the association rule

(i.e. the consequent), and the 3 or more entry points that contain

the authorization checks of the association rule. This group of entry

points can be subdivided into two sets: the target entry point and

the supporting entry points. The target entry point is the entry

point the association rule has identiied as being inconsistent, i.e.,

the entry point the association rule is recommending additional

authorization checks for. The supporting entry points are the 2 or

more entry points where the recommended authorization checks

occur. Note that the supporting authorization checks occur in both

the target and the supporting entry points. To aid the review, the

HTML ile also contains the set of all authorization checks from the

target entry point that do not occur in the supporting authorization

checks and for all authorization checks, the method in the Android

source code where the checks occur.

To reduce the manual efort required to conirm inconsisten-

cies, we perform two post-processing techniques. First, we remove

association rules where |recommended authorization checks | >=

5 ∗ |supporting authorization checks |, since association rules that

contain 100 authorization checks which imply 500 authorization

checks is improbable. Second, we remove any remaining associa-

tion rules that have over 100 recommended authorization checks

as such association rules are unlikely to indicate inconsistencies,

and the domain expert may not be able to evaluate such rules in a

reasonable amount of time.

5 EVALUATION

We evaluated ACMiner by performing an empirical analysis of the

system services in AOSP version 7.1.1_r1 (i.e., API 25) built for a

Nexus 5X device. Our analysis was performed on a machine with

an Intel Xeon E5-2620 V3 (2.40 GHz), 128 GB RAM, running Ubuntu

14.04.1 as the host OS, OpenJDK 1.8.0_141, and Python 2.7.6.

We used ACMiner to mine the authorization checks of all the

entry points from this build of AOSP and perform consistency

analysis, as described in Section 4. Finally, we manually analyzed

the inconsistencies using a systematic methodology to identify high

risk (i.e., easily exploitable) and high impact vulnerabilities, and

developed proof-of-concept exploits to validate our indings. Our

evaluation is guided by the following research questions:

RQ1 Does ACMiner reduce the efort required by the domain expert

in terms of the entry points that need to be analyzed?

RQ2 Do the inconsistencies identiied by ACMiner help a domain

expert in inding security vulnerabilities?

RQ3 What are the major causes behind inconsistencies that do not

resolve to security vulnerabilities?

RQ4 Is ACMiner more efective than prior work at detecting vulner-



4004 Total Entry Points

1995 Entry Points with

Authorization Logic

246 Entry Points

with Association

Rule(s)

(a) Entry Point Reduction

7 Entry

Points

1 Entry

Point

12 Entry

Points

8 Entry

Points

H
i
g
h

R
i
s
k

L
o
w
R
i
s
k

High Impact Low Impact

(b) Risk vs. Impact

Figure 6: (a) shows how ACMiner is able to reduce the scope of the

AOSP 7.1.1 system code a domain expert needs to evaluate and (b)

breaks down the 28 vulnerabilities in terms of risk and impact.

abilities in system services?

RQ5 What is the time required by ACMiner to analyze all the system

services in a build of Android?

We now highlight the salient indings from our evaluation, fol-

lowed by the categorization of the discovered vulnerabilities. The

categorization of non-security inconsistencies, developed via a sys-

tematic manual analysis of our results, is described in Section 6.

5.1 Evaluation Highlights

As shown in Figure 6a, ACMiner reduces the total number of en-

try points that need to be manually analyzed down to just 246

entry points with inconsistent authorization checks, a 94% reduc-

tion (RQ1). As a result, ACMiner signiicantly enhances a domain

expert’s ability to evaluate the consistency of access control en-

forcement in the Android system by minimizing the efort required.

Further, ACMiner took approximately 1 hour and 16 minutes to

mine the authorization checks of all entry points from the sys-

tem image of the AOSP build, and spent an additional 30 minutes

producing the HTML iles for the association rules that represent

potentially vulnerable entry points. While ACMiner could be opti-

mized further, time taken by ACMiner is a feasible cost, given its

scalability beneits over a fully manual analysis (RQ5).

On manually analyzing the 246 entry points, we discovered a

total of 28 entry points containing security vulnerabilities (RQ2).

As Figure 6b illustrates, these 28 vulnerabilities were then classiied

in terms of their risk (i.e., the ease of exploiting a vulnerability)

as well as the impact (i.e., the gravity of the consequence of an

exploited vulnerability). Using this criteria, we found 7 vulnera-

bilities that were high risk as well as high impact, 1 vulnerability

that was high risk only, 12 vulnerabilities that were high impact

only, and 8 vulnerabilities that were low in terms of both risk and

impact. All 28 vulnerabilities have been submitted to Google. So far,

2 of our vulnerabilities have been assigned a žmoderatež Android

Security Rewards (ASR) severity level, which is generally awarded

to bypasses in access control mechanisms (e.g., restrictions on con-

strained processes, or general bypasses of privileged processes [22]).

In Section 5.2, we categorize these 28 vulnerabilities according to

their efect; however, we only discuss a few of these vulnerabilities

in depth, due to space constraints.

ACMiner is signiicantly more efective than prior work at iden-

tifying inconsistent authorization checks. For instance, ACMiner

is able to identify 875 unique context queries using the semi-auto-

mated approach described in Section 4.2.1, a drastic 2552% improve-

ment over the original 33 context queries that encompass a majority

of the context queries considered by Kratos [38]. Further, while Ace-

Droid [2] is more comprehensive than Kratos in its identiication

of Android’s authorization checks, it relies on a manually deined

list of context queries, which is insuicient. That is, as described in

Section 4.2.1, our thorough attempts at identifying context queries

through manual observation alone resulted in the identiication

of only 620 context queries, 71% of the total context queries that

ACMiner is able to ind using its semi-automated approach. Thus,

while AceDroid does not provide quantitative information on its set

of context queries, we can certainly say that it is not as complete

as ACMiner in its identiication of Android’s authorization checks.

Indeed, the context query isValidRestriction in Figure 1 is an ex-

ample of a context query that neither AceDroid nor Kratos was able

to identify, and in fact, one that we missed in our manual deinition

of Android’s authorization checks. However, through the general

expressions, ACMiner was able to identify isValidRestriction as a

context query and the vulnerability outlined in Figure 1. Moreover,

neither AceDroid nor Kratos makes any mention of the App Ops

restrictions in their deinition of Android’s authorization checks.

Yet ACMiner is able to identify 2 vulnerabilities relating to the App

Ops restrictions (see Section 5.2). While a full empirical comparison

with Kratos and AceDroid is infeasible due to the lack of source

code access, our evaluation demonstrates that ACMiner makes sig-

niicant advancements to existing work in terms of the coverage

of the authorization checks, making the consistency analysis as

complete as possible (RQ4).

Finally, ACMiner produced 453 association rules denoting in-

consistent authorization checks in 246 entry points. Some entry

points had more than one inconsistency. Furthermore, while some

inconsistencies were indeed valid security vulnerabilities (30/453),

others were a result of irregular coding practices in Android (25/453)

or indicative of ACMiner’s limitations in terms of analyzing the

semantics of the authorization checks (RQ3). The limitations identi-

ied via our analysis point to hard problems in analyzing Android’s

access control logic and motivate future work.

5.2 Findings

Table 2 describes the vulnerabilities discovered through our anal-

ysis of Android 7.1.1 with ACMiner. On manually analyzing the

inconsistent entry points produced by ACMiner, we discovered

28 entry points that represent security vulnerabilities. While most

of these entry points represent one vulnerability each, two entry

points (i.e., getLastLocation and setStayOnSetting, vulnerabilities

15 and 16 in Table 2 respectively) each led us to clusters of multiple

identically vulnerable entry points, as described later in this section.

For simplicity, we count each cluster as a single vulnerability.

We group the vulnerabilities into the following 3 categories:

(1) user separation and restrictions, (2) App Ops, (3) and pre23.

This categorization is based on the subsystems afected by the

vulnerabilities (e.g., App Ops), as well as the characteristics they

have in common (e.g., pre23). Additionally, some vulnerabilities

that are hard to classify have been categorized as (4) miscellaneous.

VC1: Multi-user Enforcement: As shown in Table 2, a majority

(i.e., 14) of the vulnerabilities afect Android’s separation among

users (i.e. user proiles in Android’s multi-user enforcement [23]).



Table 2: Description of vulnerabilities, along with the services in which they are present

Associated Entry Point (Service) Vulnerability Description

VC1: Multi-user Enforcement

1. getInstalledApplications (PMS) Missing the enforceCrossUserPermission check, allowing any app on one user proile to discover apps installed on other proiles.

2. getPackagesHoldingPermissions (PMS) Missing enforceCrossUserPermission, allowing any app on one user proile to get sensitive permission information about other proiles.

3. hasUserRestriction (UMS) Missing the hasManageUsersPermission check, which checks for the permission MANAGE_USERS, is missing, allowing any user to discover
the restrictions on their own and other user proiles.

4. checkUriPermission (AMS) Missing the handleIncomingUser check that veriies if a user can operate on behalf of another, allowing any user access to content provider
URIs belonging to another user, so long as the app making the request has access to the content provider.

5. grantUriPermission (AMS) Missing the handleIncomingUser check, with similar implications as checkUriPermission.

6. killPackageDependents (AMS) Missing the handleIncomingUser check, allowing any user to kill the apps and background processes of another user.

7. setUserProvisioningState (DPMS) Missing the enforceFullCrossUsersPermission check, enabling any user to change another user proile’s state.

8. setDefaultBrowserPackageName (PMS) Missing the enforceCrossUserPermission check, enabling any user to set the default browser of any other user.

9. updateLockTaskPackages (AMS) Missing handleIncomingUser, enabling any user to modify the apps that may be permanently pinned to the screen in a kiosk like venue.

10. installExistingPackageAsUser (PMS) Does not check if the target user exists, allowing any user to install apps on user proiles that may be created at a later time.

11. setApplicationHiddenSettingAsUser (PMS) Does not check if the target user exists, allowing any user to hide apps on user proiles that may be created in the future.

12. setAlwaysOnVpnPackage (CS) Does not check for the no_config_vpn user restriction, allowing a managed user to set its always on VPN to another application.

13. setWallpaperComponent (WPMS) Missing the two checks isSetWallpaperAllowed and isWallpaperSupported, allowing a managed user to change their wallpaper.

14. startUpdateCredentialsSession (ACMS) Missing checks canUserModifyAccounts and canUserModifyAccountsForType, allowing a user to trigger an update for the credentials of
online accounts like Google and Facebook even when restricted.

VC2: App Ops

15. noteProxyOperation (AOMS) Missing the verifyIncomingUid check, which checks for a signature permission, allowing non-system apps to call this entry point.

16. getLastLocation (LMS) A majority of the entry points in the LMS use the AppOpsManager check checkOp, which is not intended for security, instead of the security
check noteOp. getLastLocation uses the correct check.

VC3: Pre23

17. setStayOnSetting (POMS) On systems with API 23 or above, the pre23 protection level allows any permission to be automatically granted to non-system apps built
targeting the API 22 or below. This vulnerability allows non-system apps to access 6 additional entry points protected by the WRITE_SETTINGS
signature permission, as WRITE_SETTINGS also has the pre23 protection level.

VC4: Miscellaneous

18. unbindBackupAgent (AMS) Missing check for if caller is performing a backup, allowing any app to disrupt the backup process of another app.

19. getPersistentApplications (PMS) Missing system UID check, allowing any non-system app to discover what apps and services permantly run in the background.

20. logEvents (MLS) Incorrect check for permission CONNECTIVITY_INTERNAL, should check DUMP when writing sensitive data to logs.

21. getMonitoringTypes (GHS) Missing check checkPermission, allowing a caller access both ine and coarse levels of geofence location data.

22. getStatusOfMonitoringType (GHS) Missing check checkPermission, with similar implications as getMonitoringTypes.

23. setApplicationEnabledSetting (PMS) Missing isPackageDeviceAdmin check, allowing an app to disable an active administrator app.

24. setComponentEnabledSetting (PMS) Missing isPackageDeviceAdmin check, allowing an app to disable components of an active administrator app.

25. convertFromTranslucent (AMS) Missing check for enforceNotIsolatedCaller, allowing a isolated process to afect the transparency of windows.

26. notifyLockedProfile (AMS) Missing check for enforceNotIsolatedCaller, allowing an isolated process to trigger a retrun to the home screen.

27. setActiveScorer (NSS) Missing BROADCAST_NETWORK_PRIVILEGED permission check which is always paired with the SCORE_NETWORKS permission check.

28. getCompleteVoiceMailNumberForSubscriber (PSIC) Incorrect check for permission CALL_PRIVILEGED instead of the READ_PRIVILEGED_PHONE_STATE results in coarse-grained enforcement.

AMS=ActivityManagerService; AOMS=AppOpsManagerService; CS=ConnectivityService; DPMS=DevicePolicyManagerService; LMS=LocationManagerService; PMS=PackageManagerService;
POMS=PowerManagerService; UMS=UserManagerService; WPMS=WallpaperManagerService; PSIC=PhoneSubInfoController; ACMS=AccountManagerService; MLS=MetricsLoggerService;
GHS=GeofenceHardwareService; NSS=NetworkScoreService

These can be further divided into four subcategories based on how

they may be exploited: (1) leaking user information across users,

(2) operating across users, (3) modifying user settings before a user

exists, and (4) allowing users to bypass restrictions.

1. Leaking Information to Other Users: In 5 entry points (i.e.,

1→5 in Table 2), the lack of checks leads to potential leaks of

security-sensitive information to other users. For instance, using the

vulnerable entry point getInstalledApplications in the PackageM-

anagerService, any user can learn of the applications another user

has installed, as the entry point does not enforce any checks other

than checking if the user being queried exists. Similarly, the entry

point hasUserRestriction in the UserManagerService, previously

used as the motivating example, is not protected with the signature

level permission MANAGE_USERS, which is present in the similar hasB-

aseUserRestriction entry point. This omitted authorization check

allows a user to know of the restrictions placed on other users,

which is security-sensitive information that should not be public.

The entry points getPackagesHoldingPermissions, checkUriPermis-

sion and grantUriPermission similarly leak sensitive information.

We experimentally conirmed the existence of both the vulner-

abilities in hasUserRestriction and getInstalledApplications in

Android 7.1.1 as well as Android 8.1. We have submitted bug re-

ports to Google and received žmoderatež ASR severity level for

both the bugs. Further, we conirmed that the vulnerability in get-

PackagesHoldingPermissions was ixed in Android 8.1. As a result,

we could not submit it to Google’s bug program, which only con-

siders bugs afecting the latest version of Android. All remaining

vulnerabilities have been reported to Google.

2. Operating Across Users: Missing authorization checks in 4

entry points (i.e., 6→9 in Table 2) allow users to bypass multi-user

restrictions and perform sensitive operations on behalf of other

users. For example, we discovered that the entry point killPackag-

eDependents takes in a userId as an argument but does not actually

verify whether the calling user is allowed to perform operations on

behalf of the supplied userId. This allows any user to kill the apps

and background processes of any other user. A similar law in entry

point setUserProvisioningState enables any user to set the state

of any other user proile to states such as "managed", "unmanaged",

or "inalized". Such changes may be dangerous. For instance, a user

may be able to set their managed enterprise proile to unmanaged,

releasing it from the administrator’s control.

Fortunately, all four entry points described in this category can

only be called from apps installed on the system image (i.e., are

protected by authorization checks that ensure this). This indirectly

mitigates some damage, by making the vulnerabilities diicult to ex-

ploit from a third-party app. However, capability leaks in privileged



1 /** Do a quick check for whether an application might be

2 * able to perform an operation. This is not a security

3 * check; you must use noteOp or startOp for your actual

4 * security checks , which also ensure that the given uid

5 * and package name are consistent. ... */

6 int checkOp(int op, int uid , String packageName) {...}

Figure 7: The comment above checkOp from the class AppOpsManager

that states it should not be used as a security check.

apps may allow such vulnerabilities to be exploited by third-party

apps, as prior work has demonstrated [25, 43]. All of these vulnera-

bilities have been reported to Google.

3. Modifying User Settings Before A User Exists: Both the entry

points installExistingPackageAsUser and setApplicationHiddenS-

ettingAsUser do not perform the authorization check exists, which

veriies if a the userId passed into the entry points represents a valid

user. Without this check, it is possible for a caller to install an app

for a non-existent user or hide an app from a non-existent user.

Thus, when the user for whom this change was made is actually

created, these settings will already be in place. These entry points

are only callable from systems apps; however, system apps may be

compromised or may leak capabilities, and the exists check needs to

be in place to prevent system apps from being tricked into allowing

users to install apps in proiles that have yet to be created (e.g.,

installing apps in a future enterprise proile). We have submitted

these vulnerabilities to Google.

4. Allowing Users to Bypass Restrictions: Vulnerabilities in entry

points 12→14 from Table 2 allow a user to perform operations

despite the restrictions placed on the user proile. For instance, the

entry point setAlwaysOnVpnPackage does not check for the restric-

tion no_config_vpn, allowing a managed user to set the always on

VPN for the user proile to another application, efectively switch-

ing VPN connections. The entry points setWallpaperComponent and

startUpdateCredentialsSession have similar vulnerabilities. All of

these vulnerabilities have been reported to Google.

VC2: AppOps:ACMiner identiied weaknesses related to App Ops.

One such vulnerability lies in the noteProxyOperation of the AppOps-

Service. The entry point makes a note of an application performing

some operation on behalf of some other application through IPC.

However, unlike other entry points in the AppOpsService, notePro-

xyOperation is missing the authorization check verifyIncomingUid

which includes a check for the signature level permission UPDATE-

_APP_OPS_STATS. Without verifyIncomingUid, it is possible for any

non-system app to use noteProxyOperation to query the restrictions

a user has placed on other apps, thus retrieving information that

should not be available to non-system apps.

We discovered a set of identical vulnerabilities in App Ops

through our analysis of the getLastLocation entry point in the

LocationManagerService, which ACMiner pointed out as having in-

consistent authorization checks. The getLastLocation entry point

calls the authorization check reportLocationAccessNoThrow which

performs the check noteOpNoThrow from the AppOpsManager, a wrap-

per for the AppOpsService. ACMiner correctly identiied the use of

noteOpNoThrow as an inconsistency since a majority of the entry

points (9) in LocationManagerService use the authorization check

checkLocationAccess which performs the check checkOp from the

AppOpsManager. However, as Figure 7 shows, the comment above

the checkOp method clearly states that checkOp should not be used

<permission android:name="android.permission.WRITE_SETTIN’S"

android:protectionLevel="signature|preinstalled|appop|pre23" />

Figure 8: The permission protection levels of WRITE_SETTIN’S in the

AndroidManifest.xml ile [3]

to perform a security check. Instead, one of the various forms of

noteOp should be used. This implies that all 9 entry points using the

context query checkLocationAccess sufer from a vulnerability, and

that the use of reportLocationAccessNoThrow in getLastLocation

is actually appropriate. This instance demonstrates an interesting

outcome of the use of consistency analysis in ACMiner. That is, our

use of consistency analysis in ACMiner is also useful in identify-

ing instances, where the majority of the related entry points are

vulnerable. As described previously, for simplicity, we count this

cluster of vulnerable entry points as a single vulnerability, which

has been submitted to Google.

VC3: Pre23: ACMiner identiied a group of vulnerabilities related

to Android’s pre23 permission protection level. The entry point

setStayOnSetting in the PowerManagerService uses the authoriza-

tion check checkAndNoteWriteSettingsOperation, which checks if

an app has the signature level permission WRITE_SETTINGS. Permis-

sions with the signature protection level can only be granted to

system apps (i.e., apps that were originally packaged with the sys-

tem image). However, as shown in Figure 8, WRITE_SETTINGS has an

additional protection level of pre23, which has an interesting efect

on Android versions 6.0 or above (i.e., API 23 or above). It allows

permissions marked as pre23 to be granted to non-system apps that

target API 22 or below [21]. Thus, as a result of the improperly

deined permission protection levels for WRITE_SETTINGS, the pre23

grants non-system apps access to a signature level permission.

The damage resulting from the pre23 vulnerability is not re-

stricted to the entry point setStayOnSetting. A simple search for the

use of the permission WRITE_SETTINGS in the authorization checks

ACMiner mined for all entry points in the system revealed 13 addi-

tional entry points checking for the permission WRITE_SETTINGS, 6

of which can be called from a non-system app using the pre23 vul-

nerability (i.e., these 6 entry points are not protected with any other

signature permission). Of the 6, the following 5 entry points deal

with tethering and are located in the ConnectivityService: setU-

sbTethering, stopTethering, startTethering, tether, and untether.

The last setWifiApEnabled was located in the WifiServiceImpl and

allows a caller to set some WIFI access point coniguration, causing

the device to connect or disconnect from any WIFI access point the

caller provides. These entry points are clearly more important to

protect than setStayOnSetting, and an adversary may be able to do

considerable damage by exploiting them. We do not count these

entry points in our initial list of 28 vulnerabilities. All entry points

afected by the pre23 vulnerability have been submitted to Google.

VC4: Miscellaneous Vulnerabilities: ACMiner also identiied 11

vulnerabilities related to information leaks, denial of service, dis-

abling of administrator apps, and a mixture of other minor vulnera-

bilities. All of these vulnerabilities have been reported to Google.

6 NON-SECURITY INCONSISTENCIES

ACMiner identiied 423 inconsistencies (i.e., rules) that did not rep-

resent vulnerabilities. Aside from the 20 rules that were caused by

easily ixed bugs in ACMiner, we resolve these non-security incon-



Table 3: Non-security Inconsistencies

Type of Inconsistency Number of Rules

1. Shortcuts to Speed-Up Access 7
2. Fixing Access Bugs 2
3. Potential Vulnerabilities 16
4. Diference in Functionality 189
5. Checks With Diferent Arguments 66
6. Noise in Captured Checks 53
7. Restricted to Special Callers 37
8. Semantic Groups of Checks 23
9. Equivalent Checks 10

sistencies to their likely causes, and classify them into 9 categories,

shown in Table 3 (RQ3). The irst three categories point to irregular

coding practices, i.e., (1) inconsistent application of short-cuts to

speed up access, (2) access bugs or discrepancies in how the permis-

sion should be used as per the documentation, or (3) inconsistent

application of hard-coded checks that would potentially lead to

vulnerabilities on future updates. The remaining 6 categories point

to issues that could be corrected by engineering improvements to

ACMiner, such as considering semantic equivalence between au-

thorization checks, or the integration of call graph comparison and

method-name comparison to mitigate the analysis of functionally

diferent entry points. We provide additional details on all of the 9

categories in the extended version [24].

7 LIMITATIONS

While ACMiner is efective at discovering inconsistencies that lead

to vulnerabilities, consistency analysis has a general limitation, i.e.,

it may not discover vulnerabilities that are consistent throughout

code. Further, for precision, ACMiner does not handle the invoca-

tion of secondary entry points, i.e., calls to entry points from within

other entry points. ACMiner omits the ordering of the authoriza-

tion checks and hence does not identify improper operator use in

control predicates, which we plan to explore in the future. Moreover,

ACMiner’s semi-automated analysis requires the participation of

domain experts. However, as Section 5 demonstrates, our design

signiicantly reduces manual efort in contrast with the manual

validation of system services. As we have already analyzed AOSP

version 7.1.1, only minor input is needed to analyze newer ver-

sions or vendor modiications. Finally, ACMiner shares the general

choices made by Android static analysis techniques for precision,

i.e., it does not consider native code, or runtime modiications (e.g.,

relection, dynamic code loading, Message Handlers).

8 RELATED WORK

ACMiner addresses a problem that has conceptual origins in prior

work on authorization hook validation for traditional systems. Early

investigations targeted the Linux Security Modules (LSM) hook

placement in the Linux kernel, using techniques such as type analy-

sis using CQUAL [47], program dominance [48], and dynamic anal-

ysis to create authorization graphs from control low traces [12, 29].

As the lack of ground truth is a general challenge for hook valida-

tion, prior work commonly uses consistency analysis [12, 29, 41].

Closest to our work is AutoISES [41], which infers security specii-

cations from code bases such as the Linux kernel and Xen. However,

AutoISES assumes a known set of security functions or security-

speciic data structures, whereas ACMiner identiies a diverse set

of authorization checks in the Android middleware.

The closest to our approach is prior work on authorization

hook validation in the Android platform, i.e., Kratos [38] and Ace-

Droid [2]. ACMiner distinguishes itself from Kratos and AceDroid

through its deep analysis of Android’s system services, and its

signiicantly improved coverage of Android’s authorization checks.

Kratos [38] compares a small subset of Android’s authorization

checks across entry points of the same system image to look for in-

consistent checks between diferent system services. ACMiner does

not analyze for consistency across services. Instead, we hypothesize

that entry points within a single service are similar in purpose, and

hence, analyze the consistency of the authorization checks by com-

paring the entry points of every system service with other entry

points in the same service. Further, ACMiner’s semi-automated

approach for identifying authorization checks results in a 2552%

improvement over Kratos’ manually-curated list (Section 5).

Similarly, AceDroid [2] evaluates the consistency of the autho-

rization checks among diferent vendor-modiied Android images,

and hence difers from ACMiner in terms of its objective. Ace-

Droid makes key improvements over Kratos, as it considers various

non-standard context queries not considered by Kratos. However,

AceDroid also relies on a manually-deined list of context queries,

which may produce only approximately 71% of the context queries

that ACMiner is able to ind (Section 5).

Finally, recent literature is rich with static and dynamic pro-

gram analysis of third-party Android apps targeted at privacy in-

fringement [13, 20, 26], malware [17, 27, 46], as well as vulnera-

bilities [9, 14]. As the Android platform and apps use similar pro-

gramming abstractions, researchers have applied these tools and

techniques to the platform code, e.g., for providing a mapping

between APIs and corresponding permissions [5, 8, 18] or automat-

ically identiies privacy-sensitive sources and sinks [4]. Moreover,

prior work has also studied the platform code, to analyze OEM apps

for capability leaks (e.g., Woodpecker [25] and SEFA [43]), discover

privilege escalation on update vulnerabilities (e.g., Xing et al. [44]),

or uncover gaps in the ile access control policies in OEM irmware

images (e.g., Zhou et al. [49]). While ACMiner shares a similar ob-

jective, unlike prior work, ACMiner provides an automated and

systematic investigation of core platform services.

9 CONCLUSION

This paper provides an approach for the systematic and in-depth

analysis of a crucial portion of Android’s reference monitor, i.e., its

system services. We design ACMiner, a static analysis framework

that comprehensively identiies a diverse array of authorization

checks used in Android’s system services, and then adapts the well-

founded technique of association-rule mining to detect inconsistent

access control among service entry points. We discover 28 security

vulnerabilities by analyzing AOSP version 7.1 using ACMiner, and

demonstrate signiicantly higher coverage of checks than the state

of the art. Our work demonstrates the feasibility of in-depth analy-

sis of Android’s system services with ACMiner, as it signiicantly

reduces the number of entry points that must be analyzed, from

over 4000 with millions of lines of code to a mere 246.

Acknowledgements: This work was supported by the Army Re-

search Oice (ARO) grant W911NF-16-1-0299 and the National

Science Foundation (NSF) grants CNS-1253346 and CNS-1513690.

Opinions, indings, conclusions, or recommendations in this work



are those of the authors and do not relect the views of the funders.

REFERENCES
[1] 2019. ACMiner Project Website. https://wspr.csc.ncsu.edu/acminer.
[2] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang, Ninghui Li, and Chen

Tian. 2018. AceDroid: Normalizing Diverse Android Access Control Checks
for Inconsistency Detection. In Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS).

[3] AndroidXref. 2019. WRITE_SETTINGS permission in AndroidManifest.xml.
http://androidxref.com/7.1.1_r6/xref/frameworks/base/core/res/AndroidManif
est.xml#1865. Accessed Jan. 10, 2019.

[4] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2014. A Machine-learning
Approach for Classifying and Categorizing Android Sources and Sinks. In Pro-
ceedings of the ISOC Network and Distributed Systems Symposium (NDSS).

[5] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Speciication. In Proceedings of the 2012 ACM
conference on Computer and communications security. 217ś228.

[6] Michael Backes, Sven Bugiel, Erik Derr, Patrick D McDaniel, Damien Octeau, and
Sebastian Weisgerber. 2016. On Demystifying the Android Application Frame-
work: Re-Visiting Android Permission Speciication Analysis. In Proceedings of
the USENIX Security Symposium.

[7] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von
Styp-Rekowsky. 2015. Boxify: Full-ledged App Sandboxing for Stock Android..
In USENIX Security Symposium.

[8] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon. 2014.
Static Analysis for Extracting Permission Checks of a Large Scale Framework:
The Challenges And Solutions for Analyzing Android. IEEE Transactions on
Software Engineering (TSE) 40, 6 (June 2014).

[9] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing Inter-Application Communication in Android. In Proceedings of the
9th Annual International Conference on Mobile Systems, Applications, and Services.

[10] Andrew Dalton. 2019. Android powers 2 billion devices around the world. https:
//www.engadget.com/2017/05/17/android-powers-2-billion-devices-around-t
he-world/. Accessed Jan. 10, 2019.

[11] Jefrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP).

[12] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. 2002. Runtime Veriication
of Authorization Hook Placement for the Linux Security Modules Framework. In
Proceedings of the ACM Conference on Computer and Communications Security.

[13] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-Flow
Tracking System for Realtime PrivacyMonitoring on Smartphones. In Proceedings
of the 9th USENIX Symposium on Operating Systems Design and Implementation.

[14] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011.
A Study of Android Application Security. In Proceedings of the USENIX Security
Symposium.

[15] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. On Lightweight
Mobile Phone Application Certiication. In Proceedings of the 16th ACMConference
on Computer and Communications Security (CCS).

[16] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. Understanding
Android Security. IEEE Security & Privacy Magazine 7, 1 (January/February 2009).

[17] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,
Franziska Roesner, Karl Koscher, Paulo Barros, Ravi Bhoraskar, Seungyeop Han,
Paul Vines, and Edward Wu. 2014. Collaborative Veriication of Information
Flow for a High-Assurance App Store. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS).

[18] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android Permissions Demystiied. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS).

[19] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses. In Proceedings
of the USENIX Security Symposium.

[20] Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012. AndroidLeaks:
Automatically Detecting Potential Privacy Leaks In Android Applications on a
Large Scale. In Proceedings of the International Conference on Trust and Trustworthy
Computing (TRUST).

[21] Google. 2019. protectionLevel. https://developer.android.com/reference/android/
R.attr#protectionLevel. Accessed Jan. 10, 2019.

[22] Google. 2019. Security Updates and Resources. https://source.android.com/secur
ity/overview/updates-resources. Accessed Jan. 10, 2019.

[23] Google. 2019. Supporting Multiple Users. https://source.android.com/devices/tec
h/admin/multi-user. Accessed Jan. 10, 2019.

[24] Sigmund Albert Gorski III, Benjamin Andow, Adwait Nadkarni, Sunil Manandhar,
William Enck, Eric Bodden, and Alexandre Bartel. 2019. ACMiner: Extraction
and Analysis of Authorization Checks in Android’s Middleware. http://arxiv.or
g/abs/1901.03603. (Jan. 2019). arXiv:1901.03603

[25] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic
Detection of Capability Leaks in Stock Android Smartphones. In Proceedings of
the ISCO Network and Distributed System Security Symposium (NDSS).

[26] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David
Wetherall. 2011. These Aren’t the Droids You’re Looking For: Retroitting Android
to Protect Data from Imperious Applications. In Proceedings of the ACMConference
on Computer and Communications Security (CCS).

[27] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. As-
Droid: Detecting Stealthy Behaviors in Android Applications by User Interface
and Program Behavior Contradiction. In Proceedings of the International Confer-
ence on Software Engineering (ICSE).

[28] JeeHyun Hwang, Tao Xie, Vincent Hu, and Mine Altunay. 2010. Mining likely
properties of access control policies via association rule mining. Data and Appli-
cations Security and Privacy XXIV (2010), 193ś208.

[29] Trent Jaeger, Antony Edwards, and Xiaolan Zhang. 2004. Consistency Analysis
of Authorization Hook Placement in the Linux Security Modules Framework.
Transactions on Information and System Security 7, 2 (May 2004), 175ś205.

[30] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot
framework for Java Program Analysis: A Retrospective. In Proceedings of the
Cetus Users and Compiler Infrastructure Workshop (CETUS).

[31] Ond∨rej Lhoták. 2007. Comparing Call Graphs. In Proceedings of the ACM
Workshop on Program Analysis for Software Tools and Engineering (PASTE).

[32] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis Using
SPARK. In Proceedings of the 12th International Conference on Compiler Construc-
tion (CC 03). Springer Berlin Heidelberg, Warsaw, Poland, 153ś169.

[33] Travis McCoy. 2019. How the World Bank is mobilizing their workforce with
Android. https://www.blog.google/topics/connected-workspaces/how-world-b
ank-mobilizing-their-workforce-android/. Accessed Jan. 10, 2019.

[34] Mark Milian. 2019. U.S. government, military to get secure Android phones.
http://www.cnn.com/2012/02/03/tech/mobile/government-android-phones/in
dex.html. Accessed Jan. 10, 2019.

[35] Adwait Nadkarni andWilliam Enck. 2013. Preventing Accidental Data Disclosure
in Modern Operating Systems. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS).

[36] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. 2012. Ad-
Droid: Privilege Separation for Applications and Advertisers in Android. In Proc.
of the ACM Symposium on Information, Computer and Communications Security.

[37] Steve Ranger. 2019. The world’s most secure smartphones ś and why they’re all
Androids. http://www.zdnet.com/article/the-worlds-most-secure-smartphones
-and-why-theyre-all-androids/. Accessed Jan. 10, 2019.

[38] Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2016.
Kratos: Discovering Inconsistent Security Policy Enforcement in the Android
Framework. In Proceedings of the ISOC Network and Distributed System Security
Symposium (NDSS).

[39] Riley Spahn, Jonathan Bell, Michael Lee, Sravan Bhamidipati, Roxana Geambasu,
and Gail Kaiser. 2014. Pebbles: Fine-Grained Data Management Abstractions
for Modern Operating Systems. In Proceedings of the USENIX Operating Systems
Design and Implementation (OSDI).

[40] Laszlo Szathmary. 2006. Symbolic Data Mining Methods with the Coron Platform.
Ph.D. Dissertation. Université Henri Poincaré-Nancy I.

[41] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008. Au-
toISES: Automatically Inferring Security Speciication and Detecting Violations.
In Proceedings of the USENIX Security Syposium.

[42] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - A Java Bytecode Optimization Framework. In Proc.
of the Conference of the Centre for Advanced Studies on Collaborative Research.

[43] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013. The
Impact of Vendor Customizations on Android Security. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS). 623ś634.

[44] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang. 2014. Upgrad-
ing Your Android, Elevating My Malware: Privilege Escalation through Mobile
OS Updating. In Proceedings of the IEEE Symposium on Security and Privacy.

[45] Mohammed J Zaki and Ching-Jui Hsiao. 2002. CHARM:An Eicient Algorithm for
Closed Itemset Mining. In Proceedings of the 2002 SIAM International Conference
on Data Mining.

[46] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-Aware
Android Malware Classiication Using Weighted Contextual API Dependency
Graphs. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS).

[47] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. 2002. Using CQUAL for Static
Analysis of Authorization Hook Placement. In Proceedings of the USENIX Security
Symposium.

[48] Xiaolan Zhang, Trent Jaeger, and Larry Koved. 2004. Applying Static Analysis to
Verifying Security Properties. In Proceedings of the Grace Hopper Celebration of
Women in Computing Conference (GHC).

[49] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The Peril of Fragmentation: Security Hazards in Android Device
Driver Customizations. In Proc. of the IEEE Symposium on Security and Privacy.

https://wspr.csc.ncsu.edu/acminer
http://androidxref.com/7.1.1_r6/xref/frameworks/base/core/res/AndroidManifest.xml#1865
http://androidxref.com/7.1.1_r6/xref/frameworks/base/core/res/AndroidManifest.xml#1865
https://www.engadget.com/2017/05/17/android-powers-2-billion-devices-around-the-world/
https://www.engadget.com/2017/05/17/android-powers-2-billion-devices-around-the-world/
https://www.engadget.com/2017/05/17/android-powers-2-billion-devices-around-the-world/
https://developer.android.com/reference/android/R.attr#protectionLevel
https://developer.android.com/reference/android/R.attr#protectionLevel
https://source.android.com/security/overview/updates-resources
https://source.android.com/security/overview/updates-resources
https://source.android.com/devices/tech/admin/multi-user
https://source.android.com/devices/tech/admin/multi-user
http://arxiv.org/abs/1901.03603
http://arxiv.org/abs/1901.03603
http://arxiv.org/abs/1901.03603
https://www.blog.google/topics/connected-workspaces/how-world-bank-mobilizing-their-workforce-android/
https://www.blog.google/topics/connected-workspaces/how-world-bank-mobilizing-their-workforce-android/
http://www.cnn.com/2012/02/03/tech/mobile/government-android-phones/index.html
http://www.cnn.com/2012/02/03/tech/mobile/government-android-phones/index.html
http://www.zdnet.com/article/the-worlds-most-secure-smartphones-and-why-theyre-all-androids/
http://www.zdnet.com/article/the-worlds-most-secure-smartphones-and-why-theyre-all-androids/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Overview
	4 Design
	4.1 Mining Authorization Checks
	4.2 Refining Authorization Checks
	4.3 Consistency Analysis

	5 Evaluation
	5.1 Evaluation Highlights
	5.2 Findings

	6 Non-security Inconsistencies
	7 Limitations
	8 Related Work
	9 Conclusion
	References

